BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 15252121)

  • 1. The Plasmodium falciparum Vps4 homolog mediates multivesicular body formation.
    Yang M; Coppens I; Wormsley S; Baevova P; Hoppe HC; Joiner KA
    J Cell Sci; 2004 Aug; 117(Pt 17):3831-8. PubMed ID: 15252121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vps4 regulates a subset of protein interactions at the multivesicular endosome.
    Vajjhala PR; Catchpoole E; Nguyen CH; Kistler C; Munn AL
    FEBS J; 2007 Apr; 274(8):1894-907. PubMed ID: 17408385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural analysis of ESCRT proteins suggests a role for endosome-associated tubular-vesicular membranes in ESCRT function.
    Welsch S; Habermann A; Jäger S; Müller B; Krijnse-Locker J; Kräusslich HG
    Traffic; 2006 Nov; 7(11):1551-66. PubMed ID: 17014699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Plasmodium falciparum RhopH2 promoter and first 24 amino acids are sufficient to target proteins to the rhoptries.
    Ghoneim A; Kaneko O; Tsuboi T; Torii M
    Parasitol Int; 2007 Mar; 56(1):31-43. PubMed ID: 17175193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites.
    Cao J; Kaneko O; Thongkukiatkul A; Tachibana M; Otsuki H; Gao Q; Tsuboi T; Torii M
    Parasitol Int; 2009 Mar; 58(1):29-35. PubMed ID: 18952195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Re-assessing the locations of components of the classical vesicle-mediated trafficking machinery in transfected Plasmodium falciparum.
    Adisa A; Frankland S; Rug M; Jackson K; Maier AG; Walsh P; Lithgow T; Klonis N; Gilson PR; Cowman AF; Tilley L
    Int J Parasitol; 2007 Aug; 37(10):1127-41. PubMed ID: 17428488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of the mammalian endosomal sorting complex required for transport (ESCRT) III protein hSnf7-1 with itself, membranes, and the AAA+ ATPase SKD1.
    Lin Y; Kimpler LA; Naismith TV; Lauer JM; Hanson PI
    J Biol Chem; 2005 Apr; 280(13):12799-809. PubMed ID: 15632132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of apical sushi protein in Plasmodium falciparum merozoites.
    Srivastava A; Singh S; Dhawan S; Mahmood Alam M; Mohmmed A; Chitnis CE
    Mol Biochem Parasitol; 2010 Nov; 174(1):66-9. PubMed ID: 20540969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4.
    Morahan BJ; Sallmann GB; Huestis R; Dubljevic V; Waller KL
    Exp Parasitol; 2009 Aug; 122(4):280-8. PubMed ID: 19442663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Plasmodium falciparum cGMP-dependent protein kinase (PfPKG): antiparasitic activity of a PKG inhibitor.
    Diaz CA; Allocco J; Powles MA; Yeung L; Donald RG; Anderson JW; Liberator PA
    Mol Biochem Parasitol; 2006 Mar; 146(1):78-88. PubMed ID: 16325279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomal protein P2 localizes to the parasite zoite-surface and is a target for invasion inhibitory antibodies in Toxoplasma gondii and Plasmodium falciparum.
    Sudarsan R; Chopra RK; Khan MA; Sharma S
    Parasitol Int; 2015 Feb; 64(1):43-9. PubMed ID: 25280460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmodium falciparum erythrocyte invasion: a conserved myosin associated complex.
    Jones ML; Kitson EL; Rayner JC
    Mol Biochem Parasitol; 2006 May; 147(1):74-84. PubMed ID: 16513191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying the cell biology of apicomplexan parasites using fluorescent proteins.
    Gubbels MJ; Striepen B
    Microsc Microanal; 2004 Oct; 10(5):568-79. PubMed ID: 15525431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study on the heparin-binding proteomes of Toxoplasma gondii and Plasmodium falciparum.
    Zhang Y; Jiang N; Jia B; Chang Z; Zhang Y; Wei X; Zhou J; Wang H; Zhao X; Yu S; Song M; Tu Z; Lu H; Yin J; Wahlgren M; Chen Q
    Proteomics; 2014 Aug; 14(15):1737-45. PubMed ID: 24888565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting of the ring exported protein 1 to the Maurer's clefts is mediated by a two-phase process.
    Dixon MW; Hawthorne PL; Spielmann T; Anderson KL; Trenholme KR; Gardiner DL
    Traffic; 2008 Aug; 9(8):1316-26. PubMed ID: 18489703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A lipid-binding protein mediates rhoptry discharge and invasion in Plasmodium falciparum and Toxoplasma gondii parasites.
    Suarez C; Lentini G; Ramaswamy R; Maynadier M; Aquilini E; Berry-Sterkers L; Cipriano M; Chen AL; Bradley P; Striepen B; Boulanger MJ; Lebrun M
    Nat Commun; 2019 Sep; 10(1):4041. PubMed ID: 31492901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Plasmodium falciparum family of SNAREs.
    Ayong L; Pagnotti G; Tobon AB; Chakrabarti D
    Mol Biochem Parasitol; 2007 Apr; 152(2):113-22. PubMed ID: 17240462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmodium possesses dynein light chain classes that are unique and conserved across species.
    Githui EK; De Villiers EP; McArthur AG
    Infect Genet Evol; 2009 May; 9(3):337-43. PubMed ID: 18467191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites.
    Tonkin CJ; Struck NS; Mullin KA; Stimmler LM; McFadden GI
    Mol Microbiol; 2006 Aug; 61(3):614-30. PubMed ID: 16787449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: regulating chaperone power in the parasite and the host.
    Botha M; Pesce ER; Blatch GL
    Int J Biochem Cell Biol; 2007; 39(10):1781-803. PubMed ID: 17428722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.