BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 15252202)

  • 1. Attenuation control of pyrG expression in Bacillus subtilis is mediated by CTP-sensitive reiterative transcription.
    Meng Q; Turnbough CL; Switzer RL
    Proc Natl Acad Sci U S A; 2004 Jul; 101(30):10943-8. PubMed ID: 15252202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of pyrG expression in Bacillus subtilis: CTP-regulated antitermination and reiterative transcription with pyrG templates in vitro.
    Jensen-MacAllister IE; Meng Q; Switzer RL
    Mol Microbiol; 2007 Mar; 63(5):1440-52. PubMed ID: 17302819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of transcription of the Bacillus subtilis pyrG gene, encoding cytidine triphosphate synthetase.
    Meng Q; Switzer RL
    J Bacteriol; 2001 Oct; 183(19):5513-22. PubMed ID: 11544212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cis-acting sequences of Bacillus subtilis pyrG mRNA essential for regulation by antitermination.
    Meng Q; Switzer RL
    J Bacteriol; 2002 Dec; 184(23):6734-8. PubMed ID: 12426364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The number of G residues in the Bacillus subtilis pyrG initially transcribed region governs reiterative transcription-mediated regulation.
    Elsholz AK; Jørgensen CM; Switzer RL
    J Bacteriol; 2007 Mar; 189(5):2176-80. PubMed ID: 17158658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CTP limitation increases expression of CTP synthase in Lactococcus lactis.
    Jørgensen CM; Hammer K; Martinussen J
    J Bacteriol; 2003 Nov; 185(22):6562-74. PubMed ID: 14594829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of the pyrG gene determines the pool sizes of CTP and dCTP in Lactococcus lactis.
    Jørgensen CM; Hammer K; Jensen PR; Martinussen J
    Eur J Biochem; 2004 Jun; 271(12):2438-45. PubMed ID: 15182359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of reiterative transcription from the pyrG and pyrBI promoters by bacterial RNA polymerase.
    Shin Y; Hedglin M; Murakami KS
    Nucleic Acids Res; 2020 Feb; 48(4):2144-2155. PubMed ID: 31965171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of codBA operon expression in Escherichia coli by UTP-dependent reiterative transcription and UTP-sensitive transcriptional start site switching.
    Qi F; Turnbough CL
    J Mol Biol; 1995 Dec; 254(4):552-65. PubMed ID: 7500333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. trp RNA-binding attenuation protein-5' stem-loop RNA interaction is required for proper transcription attenuation control of the Bacillus subtilis trpEDCFBA operon.
    Du H; Yakhnin AV; Dharmaraj S; Babitzke P
    J Bacteriol; 2000 Apr; 182(7):1819-27. PubMed ID: 10714985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors.
    Turnbough CL; Switzer RL
    Microbiol Mol Biol Rev; 2008 Jun; 72(2):266-300, table of contents. PubMed ID: 18535147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 5' RNA stem-loop participates in the transcription attenuation mechanism that controls expression of the Bacillus subtilis trpEDCFBA operon.
    Sudershana S; Du H; Mahalanabis M; Babitzke P
    J Bacteriol; 1999 Sep; 181(18):5742-9. PubMed ID: 10482516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular Organization of the NusA- and NusG-Stimulated RNA Polymerase Pause Signal That Participates in the Bacillus subtilis trp Operon Attenuation Mechanism.
    Mondal S; Yakhnin AV; Babitzke P
    J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28507243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism.
    Turner RJ; Lu Y; Switzer RL
    J Bacteriol; 1994 Jun; 176(12):3708-22. PubMed ID: 8206849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon.
    Quinn CL; Stephenson BT; Switzer RL
    J Biol Chem; 1991 May; 266(14):9113-27. PubMed ID: 1709162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRAP-5' stem loop interaction increases the efficiency of transcription termination in the Bacillus subtilis trpEDCFBA operon leader region.
    McGraw AP; Bevilacqua PC; Babitzke P
    RNA; 2007 Nov; 13(11):2020-33. PubMed ID: 17881743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Bacillus subtilis TRAP protein can induce transcription termination in the leader region of the tryptophan biosynthetic (trp) operon independent of the trp attenuator RNA.
    McAdams NM; Gollnick P
    PLoS One; 2014; 9(2):e88097. PubMed ID: 24505391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism.
    Choonee N; Even S; Zig L; Putzer H
    Nucleic Acids Res; 2007; 35(5):1578-88. PubMed ID: 17289755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analysis of tRNA-directed transcription antitermination of the Bacillus subtilis glyQS gene in vitro.
    Grundy FJ; Henkin TM
    J Bacteriol; 2004 Aug; 186(16):5392-9. PubMed ID: 15292140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of NusG-stimulated pausing, hairpin-dependent pause site selection and intrinsic termination at overlapping pause and termination sites in the Bacillus subtilis trp leader.
    Yakhnin AV; Babitzke P
    Mol Microbiol; 2010 May; 76(3):690-705. PubMed ID: 20384694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.