These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 15253315)

  • 1. Polymer dynamics under nanoscopic constraints: the "corset effect" as revealed by NMR relaxometry and diffusometry.
    Fatkullin N; Fischer E; Mattea C; Beginn U; Kimmich R
    Chemphyschem; 2004 Jun; 5(6):884-94. PubMed ID: 15253315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer chain dynamics under nanoscopic confinements.
    Kimmich R; Fatkullin N; Mattea C; Fischer E
    Magn Reson Imaging; 2005 Feb; 23(2):191-6. PubMed ID: 15833611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field-gradient NMR diffusometry in poly(ethylene oxide) melts confined to nanoscopic pores of solid methacrylate matrices.
    Fischer E; Beginn U; Fatkullin N; Kimmich R
    Magn Reson Imaging; 2005 Feb; 23(2):379-81. PubMed ID: 15833653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations of polymer dynamics in nanoporous media by field cycling NMR relaxometry and the dipolar correlation effect.
    Kausik R; Fatkullin N; Hüsing N; Kimmich R
    Magn Reson Imaging; 2007 May; 25(4):489-92. PubMed ID: 17466770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative polymer dynamics under nanoscopic pore confinements probed by field-cycling NMR relaxometry.
    Fatkullin N; Kausik R; Kimmich R
    J Chem Phys; 2007 Mar; 126(9):094904. PubMed ID: 17362124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-diffusion studies by intra- and inter-molecular spin-lattice relaxometry using field-cycling: Liquids, plastic crystals, porous media, and polymer segments.
    Kimmich R; Fatkullin N
    Prog Nucl Magn Reson Spectrosc; 2017 Aug; 101():18-50. PubMed ID: 28844220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular diffusion on a time scale between nano- and milliseconds probed by field-cycling NMR relaxometry of intermolecular dipolar interactions: application to polymer melts.
    Kehr M; Fatkullin N; Kimmich R
    J Chem Phys; 2007 Mar; 126(9):094903. PubMed ID: 17362123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular exchange dynamics in partially filled microscale and nanoscale pores of silica glasses studied by field-cycling nuclear magnetic resonance relaxometry.
    Mattea C; Kimmich R; Ardelean I; Wonorahardjo S; Farrher G
    J Chem Phys; 2004 Dec; 121(21):10648-56. PubMed ID: 15549948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface effects on liquid crystals constrained in nanoscaled pores investigated by field cycling NMR relaxometry and Monte Carlo simulations.
    Grinberg F
    Magn Reson Imaging; 2007 May; 25(4):485-8. PubMed ID: 17466769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpretation of molecular dynamics on different time scales in unilamellar vesicles using field-cycling NMR relaxometry.
    Meledandri CJ; Perlo J; Farrher E; Brougham DF; Anoardo E
    J Phys Chem B; 2009 Nov; 113(47):15532-40. PubMed ID: 19886620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water dynamics in ionomer membranes by field-cycling NMR relaxometry.
    Perrin JC; Lyonnard S; Guillermo A; Levitz P
    Magn Reson Imaging; 2007 May; 25(4):501-4. PubMed ID: 17466773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling law of poly(ethylene oxide) chain permeation through a nanoporous wall.
    Choudhury RP; Galvosas P; Schönhoff M
    J Phys Chem B; 2008 Oct; 112(42):13245-51. PubMed ID: 18826267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confinement effect of chain dynamics in micrometer thick layers of a polymer melt below the critical molecular weight.
    Kausik R; Mattea C; Fatkullin N; Kimmich R
    J Chem Phys; 2006 Mar; 124(11):114903. PubMed ID: 16555917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics of n-dodecylammonium chloride in aqueous solutions investigated by 2H NMR and 1H NMR relaxometry.
    Fojud Z; Szcześniak E; Jurga S; Stapf S; Kimmich R
    Solid State Nucl Magn Reson; 2004 Jan; 25(1-3):200-6. PubMed ID: 14698411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association behavior of biotinylated and non-biotinylated poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl methacrylate).
    Tan JF; Ravi P; Too HP; Hatton TA; Tam KC
    Biomacromolecules; 2005; 6(1):498-506. PubMed ID: 15638558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of a poly(ethylene oxide) tracer in a poly(methyl methacrylate) matrix: remarkable decoupling of local and global motions.
    Haley JC; Lodge TP
    J Chem Phys; 2005 Jun; 122(23):234914. PubMed ID: 16008494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responsive polymer nanoparticles formed by poly(ether amine) containing coumarin units and a poly(ethylene oxide) short chain.
    Jiang X; Wang R; Ren Y; Yin J
    Langmuir; 2009 Sep; 25(17):9629-32. PubMed ID: 19642654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Features of polymer chain dynamics as revealed by intermolecular nuclear magnetic dipole-dipole interaction: model calculations and field-cycling NMR relaxometry.
    Fatkullin N; Gubaidullin A; Stapf S
    J Chem Phys; 2010 Mar; 132(9):094903. PubMed ID: 20210412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion studies in confined nematic liquid crystals by MAS PFG NMR.
    Romanova EE; Grinberg F; Pampel A; Kärger J; Freude D
    J Magn Reson; 2009 Feb; 196(2):110-4. PubMed ID: 19006677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid state NMR perspective of drug-polymer solid solutions: a model system based on poly(ethylene oxide).
    Schachter DM; Xiong J; Tirol GC
    Int J Pharm; 2004 Aug; 281(1-2):89-101. PubMed ID: 15288346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.