These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15253937)

  • 21. Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation.
    Johnston R; Wang M; Sun Q; Sylvester AW; Hake S; Scanlon MJ
    Plant Cell; 2014 Dec; 26(12):4718-32. PubMed ID: 25516601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radial leaves of the maize mutant ragged seedling2 retain dorsiventral anatomy.
    Henderson DC; Muehlbauer GJ; Scanlon MJ
    Dev Biol; 2005 Jun; 282(2):455-66. PubMed ID: 15950610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The extended auricle1 (eta1) gene is essential for the genetic network controlling postinitiation maize leaf development.
    Osmont KS; Jesaitis LA; Freeling M
    Genetics; 2003 Nov; 165(3):1507-19. PubMed ID: 14668398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The maize milkweed pod1 mutant reveals a mechanism to modify organ morphology.
    Johnston R; Candela H; Hake S; Foster T
    Genesis; 2010 Jul; 48(7):416-23. PubMed ID: 20213690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Division and differentiation during normal and liguleless-1 maize leaf development.
    Sylvester AW; Cande WZ; Freeling M
    Development; 1990 Nov; 110(3):985-1000. PubMed ID: 2088734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distal expression of knotted1 in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection.
    Ramirez J; Bolduc N; Lisch D; Hake S
    Plant Physiol; 2009 Dec; 151(4):1878-88. PubMed ID: 19854860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The maize CRINKLY4 receptor kinase controls a cell-autonomous differentiation response.
    Becraft PW; Kang SH; Suh SG
    Plant Physiol; 2001 Oct; 127(2):486-96. PubMed ID: 11598223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice.
    Hibara K; Obara M; Hayashida E; Abe M; Ishimaru T; Satoh H; Itoh J; Nagato Y
    Dev Biol; 2009 Oct; 334(2):345-54. PubMed ID: 19665012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clonal sectors reveal that a specific meristematic domain is not utilized in the maize mutant narrow sheath.
    Scanlon MJ; Freeling M
    Dev Biol; 1997 Feb; 182(1):52-66. PubMed ID: 9073445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptomic Analysis of Leaf Sheath Maturation in Maize.
    Dong L; Qin L; Dai X; Ding Z; Bi R; Liu P; Chen Y; Brutnell TP; Wang X; Li P
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31109136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vein patterning in growing leaves: axes and polarities.
    Rolland-Lagan AG
    Curr Opin Genet Dev; 2008 Aug; 18(4):348-53. PubMed ID: 18606536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition.
    Wong AY; Colasanti J
    J Exp Bot; 2007; 58(3):403-14. PubMed ID: 17307745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The developmental gene Knotted-1 is a member of a maize homeobox gene family.
    Vollbrecht E; Veit B; Sinha N; Hake S
    Nature; 1991 Mar; 350(6315):241-3. PubMed ID: 1672445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular differentiation in the maize leaf is disrupted by bundle sheath defective mutations.
    Hall LN; Roth R; Brutnell TP; Langdale JA
    Symp Soc Exp Biol; 1998; 51():27-31. PubMed ID: 10645420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mosaic analysis of the liguleless3 mutant phenotype in maize by coordinate suppression of mutator-insertion alleles.
    Fowler JE; Muehlbauer GJ; Freeling M
    Genetics; 1996 May; 143(1):489-503. PubMed ID: 8722798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clonal mosaic analysis of EMPTY PERICARP2 reveals nonredundant functions of the duplicated HEAT SHOCK FACTOR BINDING PROTEINs during maize shoot development.
    Fu S; Scanlon MJ
    Genetics; 2004 Jul; 167(3):1381-94. PubMed ID: 15280250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint.
    Lee J; Park JJ; Kim SL; Yim J; An G
    Plant Mol Biol; 2007 Nov; 65(4):487-99. PubMed ID: 17594063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CORKSCREW1 defines a novel mechanism of domain specification in the maize shoot.
    Alexander DL; Mellor EA; Langdale JA
    Plant Physiol; 2005 Jul; 138(3):1396-408. PubMed ID: 15980185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression differences between normal and indeterminate1 maize suggest downstream targets of ID1, a floral transition regulator in maize.
    Coneva V; Zhu T; Colasanti J
    J Exp Bot; 2007; 58(13):3679-93. PubMed ID: 17928372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The SHOOT ORGANIZATION2 gene coordinates leaf domain development along the central-marginal axis in rice.
    Itoh J; Sato Y; Nagato Y
    Plant Cell Physiol; 2008 Aug; 49(8):1226-36. PubMed ID: 18596062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.