These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 15254096)

  • 41. Undesired effects of a combinatorial treatment for spinal cord injury--transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus.
    Bretzner F; Liu J; Currie E; Roskams AJ; Tetzlaff W
    Eur J Neurosci; 2008 Nov; 28(9):1795-807. PubMed ID: 18973595
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of FK506 on dorsal column axons following spinal cord injury in adult rats: neuroprotection and local regeneration.
    Bavetta S; Hamlyn PJ; Burnstock G; Lieberman AR; Anderson PN
    Exp Neurol; 1999 Aug; 158(2):382-93. PubMed ID: 10415144
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Olfactory ensheathing cells do not exhibit unique migratory or axonal growth-promoting properties after spinal cord injury.
    Lu P; Yang H; Culbertson M; Graham L; Roskams AJ; Tuszynski MH
    J Neurosci; 2006 Oct; 26(43):11120-30. PubMed ID: 17065452
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dorsal column sensory axons lack TrkC and are not rescued by local neurotrophin-3 infusions following spinal cord contusion in adult rats.
    Baker KA; Nakashima S; Hagg T
    Exp Neurol; 2007 May; 205(1):82-91. PubMed ID: 17316612
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord.
    Xu XM; Guénard V; Kleitman N; Aebischer P; Bunge MB
    Exp Neurol; 1995 Aug; 134(2):261-72. PubMed ID: 7556546
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oncomodulin affords limited regeneration to injured sensory axons in vitro and in vivo.
    Harel R; Iannotti CA; Hoh D; Clark M; Silver J; Steinmetz MP
    Exp Neurol; 2012 Feb; 233(2):708-16. PubMed ID: 22078758
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model.
    Taylor SJ; Sakiyama-Elbert SE
    J Control Release; 2006 Nov; 116(2):204-10. PubMed ID: 16919351
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat.
    Ide C; Nakai Y; Nakano N; Seo TB; Yamada Y; Endo K; Noda T; Saito F; Suzuki Y; Fukushima M; Nakatani T
    Brain Res; 2010 May; 1332():32-47. PubMed ID: 20307513
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neuronal overexpression of tissue-type plasminogen activator does not enhance sensory axon regeneration or locomotor recovery following dorsal hemisection of adult mouse thoracic spinal cord.
    Moon LD; Madani R; Vassalli JD; Bunge MB
    J Neurosci Res; 2006 Nov; 84(6):1245-54. PubMed ID: 16917839
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chronic enhancement of the intrinsic growth capacity of sensory neurons combined with the degradation of inhibitory proteoglycans allows functional regeneration of sensory axons through the dorsal root entry zone in the mammalian spinal cord.
    Steinmetz MP; Horn KP; Tom VJ; Miller JH; Busch SA; Nair D; Silver DJ; Silver J
    J Neurosci; 2005 Aug; 25(35):8066-76. PubMed ID: 16135764
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury.
    Stokols S; Tuszynski MH
    Biomaterials; 2006 Jan; 27(3):443-51. PubMed ID: 16099032
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery.
    Nikulina E; Tidwell JL; Dai HN; Bregman BS; Filbin MT
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8786-90. PubMed ID: 15173585
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combination of bone marrow stromal cell transplantation with mobilization by granulocyte-colony stimulating factor promotes functional recovery after spinal cord transection.
    Luo J; Zhang HT; Jiang XD; Xue S; Ke YQ
    Acta Neurochir (Wien); 2009 Nov; 151(11):1483-92. PubMed ID: 19499175
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conditioning lesions before or after spinal cord injury recruit broad genetic mechanisms that sustain axonal regeneration: superiority to camp-mediated effects.
    Blesch A; Lu P; Tsukada S; Alto LT; Roet K; Coppola G; Geschwind D; Tuszynski MH
    Exp Neurol; 2012 May; 235(1):162-73. PubMed ID: 22227059
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuroimmune processes associated with Wallerian degeneration support neurotrophin-3-induced axonal sprouting in the injured spinal cord.
    Chen Q; Shine HD
    J Neurosci Res; 2013 Oct; 91(10):1280-91. PubMed ID: 23907999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord.
    Prewitt CM; Niesman IR; Kane CJ; Houlé JD
    Exp Neurol; 1997 Dec; 148(2):433-43. PubMed ID: 9417823
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nerve growth factor-hypersecreting Schwann cell grafts augment and guide spinal cord axonal growth and remyelinate central nervous system axons in a phenotypically appropriate manner that correlates with expression of L1.
    Weidner N; Blesch A; Grill RJ; Tuszynski MH
    J Comp Neurol; 1999 Nov; 413(4):495-506. PubMed ID: 10495438
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cyclic AMP promotes axon regeneration, lesion repair and neuronal survival in lampreys after spinal cord injury.
    Lau BY; Fogerson SM; Walsh RB; Morgan JR
    Exp Neurol; 2013 Dec; 250():31-42. PubMed ID: 24041988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.