These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 15254171)

  • 1. Transport of African swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin.
    Jouvenet N; Monaghan P; Way M; Wileman T
    J Virol; 2004 Aug; 78(15):7990-8001. PubMed ID: 15254171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II.
    Stefanovic S; Windsor M; Nagata KI; Inagaki M; Wileman T
    J Virol; 2005 Sep; 79(18):11766-75. PubMed ID: 16140754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. African swine fever virus infection disrupts centrosome assembly and function.
    Jouvenet N; Wileman T
    J Gen Virol; 2005 Mar; 86(Pt 3):589-594. PubMed ID: 15722518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. African swine fever virus interaction with microtubules.
    de Matos AP; Carvalho ZG
    Biol Cell; 1993; 78(3):229-34. PubMed ID: 8241964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Migration of mitochondria to viral assembly sites in African swine fever virus-infected cells.
    Rojo G; Chamorro M; Salas ML; Viñuela E; Cuezva JM; Salas J
    J Virol; 1998 Sep; 72(9):7583-8. PubMed ID: 9696857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redistribution of Endosomal Membranes to the African Swine Fever Virus Replication Site.
    Cuesta-Geijo MÁ; Barrado-Gil L; Galindo I; Muñoz-Moreno R; Alonso C
    Viruses; 2017 Jun; 9(6):. PubMed ID: 28587154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity.
    Andrés G; García-Escudero R; Viñuela E; Salas ML; Rodríguez JM
    J Virol; 2001 Aug; 75(15):6758-68. PubMed ID: 11435554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein.
    Alonso C; Miskin J; Hernáez B; Fernandez-Zapatero P; Soto L; Cantó C; Rodríguez-Crespo I; Dixon L; Escribano JM
    J Virol; 2001 Oct; 75(20):9819-27. PubMed ID: 11559815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus.
    Rietdorf J; Ploubidou A; Reckmann I; Holmström A; Frischknecht F; Zettl M; Zimmermann T; Way M
    Nat Cell Biol; 2001 Nov; 3(11):992-1000. PubMed ID: 11715020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus.
    Simões M; Martins C; Ferreira F
    Virus Res; 2015 Dec; 210():1-7. PubMed ID: 26183880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The progressive adaptation of a georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome.
    Krug PW; Holinka LG; O'Donnell V; Reese B; Sanford B; Fernandez-Sainz I; Gladue DP; Arzt J; Rodriguez L; Risatti GR; Borca MV
    J Virol; 2015 Feb; 89(4):2324-32. PubMed ID: 25505073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of African swine fever virus with the cytoskeleton.
    Carvalho ZG; De Matos AP; Rodrigues-Pousada C
    Virus Res; 1988 Sep; 11(2):175-92. PubMed ID: 3201825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular virus DNA distribution and the acquisition of the nucleoprotein core during African swine fever virus particle assembly: ultrastructural in situ hybridisation and DNase-gold labelling.
    Brookes SM; Hyatt AD; Wise T; Parkhouse RM
    Virology; 1998 Sep; 249(1):175-88. PubMed ID: 9740789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of African swine fever virion proteins j5R and j13L: immuno-localization in virus particles and assembly sites.
    Brookes SM; Sun H; Dixon LK; Parkhouse RM
    J Gen Virol; 1998 May; 79 ( Pt 5)():1179-88. PubMed ID: 9603333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggresomes resemble sites specialized for virus assembly.
    Heath CM; Windsor M; Wileman T
    J Cell Biol; 2001 Apr; 153(3):449-55. PubMed ID: 11331297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. African swine fever virus causes microtubule-dependent dispersal of the trans-golgi network and slows delivery of membrane protein to the plasma membrane.
    Netherton CL; McCrossan MC; Denyer M; Ponnambalam S; Armstrong J; Takamatsu HH; Wileman TE
    J Virol; 2006 Nov; 80(22):11385-92. PubMed ID: 16956944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apigenin inhibits African swine fever virus infection in vitro.
    Hakobyan A; Arabyan E; Avetisyan A; Abroyan L; Hakobyan L; Zakaryan H
    Arch Virol; 2016 Dec; 161(12):3445-3453. PubMed ID: 27638776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. African swine fever virus morphogenesis.
    Salas ML; Andrés G
    Virus Res; 2013 Apr; 173(1):29-41. PubMed ID: 23059353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotype-based identification of host genes required for replication of African swine fever virus.
    Chang AC; Zsak L; Feng Y; Mosseri R; Lu Q; Kowalski P; Zsak A; Burrage TG; Neilan JG; Kutish GF; Lu Z; Laegreid W; Rock DL; Cohen SN
    J Virol; 2006 Sep; 80(17):8705-17. PubMed ID: 16912318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. African swine fever virus organelle rearrangements.
    Netherton CL; Wileman TE
    Virus Res; 2013 Apr; 173(1):76-86. PubMed ID: 23291273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.