These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 15254259)

  • 41. dnaA gene sequences from Wolbachia pipientis support subdivision into supergroups and provide no evidence for recombination in the lineages infecting nematodes.
    Casiraghi M; Werren JH; Bazzocchi C; Biserni A; Bandi C
    Parassitologia; 2003 Mar; 45(1):13-8. PubMed ID: 15270538
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular evidence for the endosymbiont Wolbachia in a non-filaroid nematode, Angiostrongylus cantonensis.
    Tsai KH; Huang CG; Wang LC; Yu YW; Wu WJ; Chen WJ
    J Biomed Sci; 2007 Sep; 14(5):607-15. PubMed ID: 17562224
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex.
    Raychoudhury R; Baldo L; Oliveira DC; Werren JH
    Evolution; 2009 Jan; 63(1):165-83. PubMed ID: 18826448
    [TBL] [Abstract][Full Text] [Related]  

  • 44. From phylogenetics to phylogenomics: the evolutionary relationships of insect endosymbiotic gamma-Proteobacteria as a test case.
    Comas I; Moya A; González-Candelas F
    Syst Biol; 2007 Feb; 56(1):1-16. PubMed ID: 17366133
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Remarkable abundance and evolution of mobile group II introns in Wolbachia bacterial endosymbionts.
    Leclercq S; Giraud I; Cordaux R
    Mol Biol Evol; 2011 Jan; 28(1):685-97. PubMed ID: 20819906
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Super-infections of Wolbachia in byturid beetles and evidence for genetic transfer between A and B super-groups of Wolbachia.
    Malloch G; Fenton B
    Mol Ecol; 2005 Feb; 14(2):627-37. PubMed ID: 15660951
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacteriophage WO Can Mediate Horizontal Gene Transfer in Endosymbiotic
    Wang GH; Sun BF; Xiong TL; Wang YK; Murfin KE; Xiao JH; Huang DW
    Front Microbiol; 2016; 7():1867. PubMed ID: 27965627
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Wolbachia WO bacteriophage proteome in the Aedes albopictus C/wStr1 cell line: evidence for lytic activity?
    Baldridge GD; Markowski TW; Witthuhn BA; Higgins L; Baldridge AS; Fallon AM
    In Vitro Cell Dev Biol Anim; 2016 Jan; 52(1):77-88. PubMed ID: 26427709
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Widespread phages of endosymbionts: Phage WO genomics and the proposed taxonomic classification of Symbioviridae.
    Bordenstein SR; Bordenstein SR
    PLoS Genet; 2022 Jun; 18(6):e1010227. PubMed ID: 35666732
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative genomics of Wolbachia and the bacterial species concept.
    Ellegaard KM; Klasson L; Näslund K; Bourtzis K; Andersson SG
    PLoS Genet; 2013 Apr; 9(4):e1003381. PubMed ID: 23593012
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamics of mutation and recombination in a replicating population of complementing, defective viral genomes.
    García-Arriaza J; Ojosnegros S; Dávila M; Domingo E; Escarmís C
    J Mol Biol; 2006 Jul; 360(3):558-72. PubMed ID: 16797586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distribution and Evolution of the Bacteriophage WO and Its Antagonism With
    Miao YH; Xiao JH; Huang DW
    Front Microbiol; 2020; 11():595629. PubMed ID: 33281793
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Behavior of Wolbachia endosymbionts from Drosophila simulans in Drosophila serrata, a novel host.
    Clancy DJ; Hoffmann AA
    Am Nat; 1997 May; 149(5):975-88. PubMed ID: 18811258
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution.
    Lindell D; Jaffe JD; Coleman ML; Futschik ME; Axmann IM; Rector T; Kettler G; Sullivan MB; Steen R; Hess WR; Church GM; Chisholm SW
    Nature; 2007 Sep; 449(7158):83-6. PubMed ID: 17805294
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genomic islands and the ecology and evolution of Prochlorococcus.
    Coleman ML; Sullivan MB; Martiny AC; Steglich C; Barry K; Delong EF; Chisholm SW
    Science; 2006 Mar; 311(5768):1768-70. PubMed ID: 16556843
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of horizontal gene transfer in the evolution of plant parasitism among nematodes.
    Mitreva M; Smant G; Helder J
    Methods Mol Biol; 2009; 532():517-35. PubMed ID: 19271205
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection and phylogenetic analysis of bacteriophage WO in spiders (Araneae).
    Yan Q; Qiao H; Gao J; Yun Y; Liu F; Peng Y
    Folia Microbiol (Praha); 2015 Nov; 60(6):497-503. PubMed ID: 25903547
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity.
    Baldo L; Ayoub NA; Hayashi CY; Russell JA; Stahlhut JK; Werren JH
    Mol Ecol; 2008 Jan; 17(2):557-69. PubMed ID: 18179432
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lateral transfers of insertion sequences between Wolbachia, Cardinium and Rickettsia bacterial endosymbionts.
    Duron O
    Heredity (Edinb); 2013 Oct; 111(4):330-7. PubMed ID: 23759724
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies.
    Russell JA; Goldman-Huertas B; Moreau CS; Baldo L; Stahlhut JK; Werren JH; Pierce NE
    Evolution; 2009 Mar; 63(3):624-40. PubMed ID: 19054050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.