These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 15254369)
1. Occurrence of plant-uncoupling mitochondrial protein (PUMP) in diverse organs and tissues of several plants. Jezek P; Zácková M; Kosarová J; Rodrigues ET; Madeira VM; Vicente JA J Bioenerg Biomembr; 2000 Dec; 32(6):549-61. PubMed ID: 15254369 [TBL] [Abstract][Full Text] [Related]
2. Influence of CSP 310 and CSP 310-like proteins from cereals on mitochondrial energetic activity and lipid peroxidation in vitro and in vivo. Kolesnichenko AV; Zykova VV; Grabelnych OI; Koroleva NA; Pobezhimova TP; Konstantinov YM; Voinikov VK BMC Plant Biol; 2001; 1():1. PubMed ID: 11667950 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the plant uncoupling protein, SrUCPA, expressed in spadix mitochondria of the thermogenic skunk cabbage. Ito-Inaba Y; Hida Y; Ichikawa M; Kato Y; Yamashita T J Exp Bot; 2008; 59(4):995-1005. PubMed ID: 18308738 [TBL] [Abstract][Full Text] [Related]
4. Activation of the potato plant uncoupling mitochondrial protein inhibits reactive oxygen species generation by the respiratory chain. Kowaltowski AJ; Costa AD; Vercesi AE FEBS Lett; 1998 Mar; 425(2):213-6. PubMed ID: 9559650 [TBL] [Abstract][Full Text] [Related]
5. Linoleic acid-induced activity of plant uncoupling mitochondrial protein in purified tomato fruit mitochondria during resting, phosphorylating, and progressively uncoupled respiration. Jarmuszkiewicz W; Almeida AM; Sluse-Goffart CM; Sluse FE; Vercesi AE J Biol Chem; 1998 Dec; 273(52):34882-6. PubMed ID: 9857016 [TBL] [Abstract][Full Text] [Related]
6. The involvement of PUMP from mitochondria of Araucaria angustifolia embryogenic cells in response to cold stress. Valente C; Pasqualim P; Jacomasso T; Maurer JB; Souza EM; Martinez GR; Rocha ME; Carnieri EG; Cadena SM Plant Sci; 2012 Dec; 197():84-91. PubMed ID: 23116675 [TBL] [Abstract][Full Text] [Related]
7. Low temperature and aging-promoted expression of PUMP in potato tuber mitochondria. Nantes IL; Fagian MM; Catisti R; Arruda P; Maia IG; Vercesi AE FEBS Lett; 1999 Aug; 457(1):103-6. PubMed ID: 10486573 [TBL] [Abstract][Full Text] [Related]
8. Plant uncoupling mitochondrial protein activity in mitochondria isolated from tomatoes at different stages of ripening. Costa AD; Nantes IL; Jezek P; Leite A; Arruda P; Vercesi AE J Bioenerg Biomembr; 1999 Oct; 31(5):527-33. PubMed ID: 10653480 [TBL] [Abstract][Full Text] [Related]
10. Stress-induced protein CSP 310: a third uncoupling system in plants. Kolesnichenko AV; Pobezhimova TP; Grabelnych OI; Voinikov VK Planta; 2002 Jun; 215(2):279-86. PubMed ID: 12029477 [TBL] [Abstract][Full Text] [Related]
11. Plant uncoupling mitochondrial protein and alternative oxidase: energy metabolism and stress. Borecký J; Vercesi AE Biosci Rep; 2005; 25(3-4):271-86. PubMed ID: 16283557 [TBL] [Abstract][Full Text] [Related]
12. Certain aspects of uncoupling due to mitochondrial uncoupling proteins in vitro and in vivo. Dlasková A; Spacek T; Skobisová E; Santorová J; Jezek P Biochim Biophys Acta; 2006; 1757(5-6):467-73. PubMed ID: 16781660 [TBL] [Abstract][Full Text] [Related]
13. Important amino acid residues of potato plant uncoupling protein (StUCP). Jezek P; Costa AD; Vercesi AE Braz J Med Biol Res; 2000 Dec; 33(12):1413-20. PubMed ID: 11105092 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings. Grabelnych OI; Borovik OA; Tauson EL; Pobezhimova TP; Katyshev AI; Pavlovskaya NS; Koroleva NA; Lyubushkina IV; Bashmakov VY; Popov VN; Borovskii GB; Voinikov VK Biochemistry (Mosc); 2014 Jun; 79(6):506-19. PubMed ID: 25100008 [TBL] [Abstract][Full Text] [Related]
15. Plant uncoupling protein in mitochondria from aged-dehydrated slices of Jerusalem artichoke tubers becomes sensitive to superoxide and to hydrogen peroxide without increase in protein level. Paventi G; Pastore D; Bobba A; Pizzuto R; Di Pede S; Passarella S Biochimie; 2006 Feb; 88(2):179-88. PubMed ID: 16181725 [TBL] [Abstract][Full Text] [Related]
16. In phosphorylating Acanthamoeba castellanii mitochondria the sensitivity of uncoupling protein activity to GTP depends on the redox state of quinone. Jarmuszkiewicz W; Swida A; Czarna M; Antos N; Sluse-Goffart CM; Sluse FE J Bioenerg Biomembr; 2005 Apr; 37(2):97-107. PubMed ID: 15906155 [TBL] [Abstract][Full Text] [Related]
17. Hydroxynonenal, a lipid peroxidation end product, stimulates uncoupling protein activity in Acanthamoeba castellanii mitochondria; the sensitivity of the inducible activity to purine nucleotides depends on the membranous ubiquinone redox state. Woyda-Ploszczyca AM; Jarmuszkiewicz W J Bioenerg Biomembr; 2012 Oct; 44(5):525-38. PubMed ID: 22798183 [TBL] [Abstract][Full Text] [Related]
18. Cold tolerance of UCP1-ablated mice: a skeletal muscle mitochondria switch toward lipid oxidation with marked UCP3 up-regulation not associated with increased basal, fatty acid- or ROS-induced uncoupling or enhanced GDP effects. Shabalina IG; Hoeks J; Kramarova TV; Schrauwen P; Cannon B; Nedergaard J Biochim Biophys Acta; 2010; 1797(6-7):968-80. PubMed ID: 20227385 [TBL] [Abstract][Full Text] [Related]
19. The discovery of an uncoupling mitochondrial protein in plants. Vercesi AE Biosci Rep; 2001 Apr; 21(2):195-200. PubMed ID: 11725868 [TBL] [Abstract][Full Text] [Related]
20. Free fatty acids regulate the uncoupling protein and alternative oxidase activities in plant mitochondria. Sluse FE; Almeida AM; Jarmuszkiewicz W; Vercesi AE FEBS Lett; 1998 Aug; 433(3):237-40. PubMed ID: 9744802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]