BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15254374)

  • 1. Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria.
    Herrero A; Barja G
    J Bioenerg Biomembr; 2000 Dec; 32(6):609-15. PubMed ID: 15254374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon.
    Herrero A; Barja G
    Mech Ageing Dev; 1997 Nov; 98(2):95-111. PubMed ID: 9379714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species.
    Fato R; Bergamini C; Bortolus M; Maniero AL; Leoni S; Ohnishi T; Lenaz G
    Biochim Biophys Acta; 2009 May; 1787(5):384-92. PubMed ID: 19059197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial free radical production and aging in mammals and birds.
    Barja G
    Ann N Y Acad Sci; 1998 Nov; 854():224-38. PubMed ID: 9928433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species.
    Ku HH; Brunk UT; Sohal RS
    Free Radic Biol Med; 1993 Dec; 15(6):621-7. PubMed ID: 8138188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria.
    Vinogradov AD; Grivennikova VG
    Biochemistry (Mosc); 2005 Feb; 70(2):120-7. PubMed ID: 15807648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity.
    Barja G
    J Bioenerg Biomembr; 1999 Aug; 31(4):347-66. PubMed ID: 10665525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial ubiquinone homologues, superoxide radical generation, and longevity in different mammalian species.
    Lass A; Agarwal S; Sohal RS
    J Biol Chem; 1997 Aug; 272(31):19199-204. PubMed ID: 9235911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
    Matsuzaki S; Kotake Y; Humphries KM
    Biochemistry; 2011 Dec; 50(50):10792-803. PubMed ID: 22091587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential pathways.
    Staniek K; Gille L; Kozlov AV; Nohl H
    Free Radic Res; 2002 Apr; 36(4):381-7. PubMed ID: 12069101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sites of generation of reactive oxygen species in homogenates of brain tissue determined with the use of respiratory substrates and inhibitors.
    Kudin AP; Malinska D; Kunz WS
    Biochim Biophys Acta; 2008; 1777(7-8):689-95. PubMed ID: 18510942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibitory effect of extracts of cigarette tar on electron transport of mitochondria and submitochondrial particles.
    Pryor WA; Arbour NC; Upham B; Church DF
    Free Radic Biol Med; 1992; 12(5):365-72. PubMed ID: 1317324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III.
    Dröse S; Hanley PJ; Brandt U
    Biochim Biophys Acta; 2009 Jun; 1790(6):558-65. PubMed ID: 19364480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon.
    Barja G; Herrero A
    J Bioenerg Biomembr; 1998 Jun; 30(3):235-43. PubMed ID: 9733090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A possible site of superoxide generation in the complex I segment of rat heart mitochondria.
    Ohnishi ST; Ohnishi T; Muranaka S; Fujita H; Kimura H; Uemura K; Yoshida K; Utsumi K
    J Bioenerg Biomembr; 2005 Feb; 37(1):1-15. PubMed ID: 15906144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.