These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 15254639)
21. Rapid desilylation of oligoribonucleotides at elevated temperatures: cleavage activity in ribozyme-substrate assays. Vinayak R; Andrus A; Hampel A Biomed Pept Proteins Nucleic Acids; 1995; 1(4):227-30. PubMed ID: 9346836 [TBL] [Abstract][Full Text] [Related]
22. Location of spermine and other polyamines on DNA as revealed by photoaffinity cleavage with polyaminobenzenediazonium salts. Schmid N; Behr JP Biochemistry; 1991 Apr; 30(17):4357-61. PubMed ID: 2021627 [TBL] [Abstract][Full Text] [Related]
23. Functional equivalence of the uridine turn and the hairpin as building blocks of tertiary structure in the Neurospora VS ribozyme. Sood VD; Collins RA J Mol Biol; 2001 Nov; 313(5):1013-9. PubMed ID: 11700057 [TBL] [Abstract][Full Text] [Related]
24. Synthesis and properties of RNA analogues having amides as interuridine linkages at selected positions. Rozners E; Katkevica D; Bizdena E; Strömberg R J Am Chem Soc; 2003 Oct; 125(40):12125-36. PubMed ID: 14518999 [TBL] [Abstract][Full Text] [Related]
25. Syntheses of RNAs with up to 100 nucleotides containing site-specific 2'-methylseleno labels for use in X-ray crystallography. Höbartner C; Rieder R; Kreutz C; Puffer B; Lang K; Polonskaia A; Serganov A; Micura R J Am Chem Soc; 2005 Aug; 127(34):12035-45. PubMed ID: 16117544 [TBL] [Abstract][Full Text] [Related]
26. Practical Synthesis of Spermine, Thermospermine and Norspermine. Kariya Y; Asanuma Y; Inai M; Asakawa T; Ohashi-Ito K; Fukuda H; Egi M; Kan T Chem Pharm Bull (Tokyo); 2016; 64(9):1403-7. PubMed ID: 27581645 [TBL] [Abstract][Full Text] [Related]
27. Modulations of glypican-1 heparan sulfate structure by inhibition of endogenous polyamine synthesis. Mapping of spermine-binding sites and heparanase, heparin lyase, and nitric oxide/nitrite cleavage sites. Ding K; Sandgren S; Mani K; Belting M; Fransson LA J Biol Chem; 2001 Dec; 276(50):46779-91. PubMed ID: 11577085 [TBL] [Abstract][Full Text] [Related]
28. Effect of structural modifications on the activity of the leadzyme. Chartrand P; Usman N; Cedergren R Biochemistry; 1997 Mar; 36(11):3145-50. PubMed ID: 9115990 [TBL] [Abstract][Full Text] [Related]
29. Spermine switches a Neurospora VS ribozyme from slow Cis cleavage to fast trans cleavage. Olive JE; Collins RA Biochemistry; 1998 May; 37(18):6476-84. PubMed ID: 9572865 [TBL] [Abstract][Full Text] [Related]
30. Conformational heterogeneity at position U37 of an all-RNA hairpin ribozyme with implications for metal binding and the catalytic structure of the S-turn. Alam S; Grum-Tokars V; Krucinska J; Kundracik ML; Wedekind JE Biochemistry; 2005 Nov; 44(44):14396-408. PubMed ID: 16262240 [TBL] [Abstract][Full Text] [Related]
31. Intracellular ribozyme-catalyzed trans-cleavage of RNA monitored by fluorescence resonance energy transfer. Vitiello D; Pecchia DB; Burke JM RNA; 2000 Apr; 6(4):628-37. PubMed ID: 10786853 [TBL] [Abstract][Full Text] [Related]
32. Biogenic triamine and tetraamine activate core catalytic ability of Tetrahymena group I ribozyme in the absence of its large activator module. Gulshan MA; Rahman MM; Matsumura S; Higuchi T; Umezawa N; Ikawa Y Biochem Biophys Res Commun; 2018 Feb; 496(2):594-600. PubMed ID: 29339152 [TBL] [Abstract][Full Text] [Related]
33. Ionic, structural, and temperature effects on DNA nanoparticles formed by natural and synthetic polyamines. Vijayanathan V; Lyall J; Thomas T; Shirahata A; Thomas TJ Biomacromolecules; 2005; 6(2):1097-103. PubMed ID: 15762682 [TBL] [Abstract][Full Text] [Related]
34. Assay of ribozyme-substrate cleavage by anion-exchange high-performance liquid chromatography. Vinayak R; Andrus A; Sinha ND; Hampel A Anal Biochem; 1995 Dec; 232(2):204-9. PubMed ID: 8747476 [TBL] [Abstract][Full Text] [Related]
35. Synthesis of 2'-O-[2-(N-methylcarbamoyl)ethyl]ribonucleosides using oxa-Michael reaction and chemical and biological properties of oligonucleotide derivatives incorporating these modified ribonucleosides. Yamada T; Okaniwa N; Saneyoshi H; Ohkubo A; Seio K; Nagata T; Aoki Y; Takeda S; Sekine M J Org Chem; 2011 May; 76(9):3042-53. PubMed ID: 21425877 [TBL] [Abstract][Full Text] [Related]
36. Total chemical synthesis of a ribozyme derived from a group I intron. Whoriskey SK; Usman N; Szostak JW Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2465-9. PubMed ID: 7708666 [TBL] [Abstract][Full Text] [Related]
37. The nonenzymatic hydrolysis of oligoribonucleotides. VII. Structural elements affecting hydrolysis. Bibillo A; Figlerowicz M; Ziomek K; Kierzek R Nucleosides Nucleotides Nucleic Acids; 2000; 19(5-6):977-94. PubMed ID: 10893716 [TBL] [Abstract][Full Text] [Related]
38. The global structure of the VS ribozyme. Lafontaine DA; Norman DG; Lilley DM EMBO J; 2002 May; 21(10):2461-71. PubMed ID: 12006498 [TBL] [Abstract][Full Text] [Related]
39. New synthetic routes to synthons suitable for 2'-O-allyloligoribonucleotide assembly. Sproat BS; Iribarren AM; Garcia RG; Beijer B Nucleic Acids Res; 1991 Feb; 19(4):733-8. PubMed ID: 1708121 [TBL] [Abstract][Full Text] [Related]
40. Tritiation and characterization of several polyamine natural products. Morrison JC; Filer CN Appl Radiat Isot; 2015 Apr; 98():71-3. PubMed ID: 25638575 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]