These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15255209)

  • 21. Constant DI pacing suppresses cardiac alternans formation in numerical cable models.
    Zlochiver S; Johnson C; Tolkacheva EG
    Chaos; 2017 Sep; 27(9):093903. PubMed ID: 28964144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stochastic pacing reveals the propensity to cardiac action potential alternans and uncovers its underlying dynamics.
    Prudat Y; Madhvani RV; Angelini M; Borgstom NP; Garfinkel A; Karagueuzian HS; Weiss JN; de Lange E; Olcese R; Kucera JP
    J Physiol; 2016 May; 594(9):2537-53. PubMed ID: 26563830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heart rate variability alters cardiac repolarization and electromechanical dynamics.
    Phadumdeo VM; Weinberg SH
    J Theor Biol; 2018 Apr; 442():31-43. PubMed ID: 29337261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heart rate variability and alternans formation in the heart: The role of feedback in cardiac dynamics.
    McIntyre SD; Kakade V; Mori Y; Tolkacheva EG
    J Theor Biol; 2014 Jun; 350():90-7. PubMed ID: 24576615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects and underlying mechanisms of refractory period pacing on repolarization dynamics in the human heart.
    Santos D; Orini M; Zhou X; Bueno-Orovio A; Hanson B; Taggart P; Hayward M; Rodriguez B; Lambiase P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():157-160. PubMed ID: 28268303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global vs local control of cardiac alternans in a 1D numerical model of human ventricular tissue.
    Thakare S; Mathew J; Zlochiver S; Zhao X; Tolkacheva EG
    Chaos; 2020 Aug; 30(8):083123. PubMed ID: 32872833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cardiac alternans annihilation by distributed mechano-electric feedback (MEF).
    Deshpande D; Belhamadia Y; Dubljevic S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():259-62. PubMed ID: 22254299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hysteresis effect implicates calcium cycling as a mechanism of repolarization alternans.
    Walker ML; Wan X; Kirsch GE; Rosenbaum DS
    Circulation; 2003 Nov; 108(21):2704-9. PubMed ID: 14581412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of electrical alternans in canine cardiac purkinje fibers.
    Christini DJ; Riccio ML; Culianu CA; Fox JJ; Karma A; Gilmour RF
    Phys Rev Lett; 2006 Mar; 96(10):104101. PubMed ID: 16605736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TU alternans, long QTU, and torsade de pointes: clinical and experimental observations.
    Habbab MA; el-Sherif N
    Pacing Clin Electrophysiol; 1992 Jun; 15(6):916-31. PubMed ID: 1376904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism linking T-wave alternans to the genesis of cardiac fibrillation.
    Pastore JM; Girouard SD; Laurita KR; Akar FG; Rosenbaum DS
    Circulation; 1999 Mar; 99(10):1385-94. PubMed ID: 10077525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stochastic pacing effect on cardiac alternans--simulation study of a 2D human ventricular tissue.
    Dvir H; Zlochiver S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1514-7. PubMed ID: 24109987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uncovering the dynamics of cardiac systems using stochastic pacing and frequency domain analyses.
    Lemay M; de Lange E; Kucera JP
    PLoS Comput Biol; 2012; 8(3):e1002399. PubMed ID: 22396631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-Time Closed Loop Diastolic Interval Control Prevents Cardiac Alternans in Isolated Whole Rabbit Hearts.
    Kulkarni K; Lee SW; Kluck R; Tolkacheva EG
    Ann Biomed Eng; 2018 Apr; 46(4):555-566. PubMed ID: 29356998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupled dynamics of voltage and calcium in paced cardiac cells.
    Shiferaw Y; Sato D; Karma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021903. PubMed ID: 15783348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alternans of epicardial repolarization as a localized phenomenon in man.
    Sutton PM; Taggart P; Lab M; Runnalls ME; O'Brien W; Treasure T
    Eur Heart J; 1991 Jan; 12(1):70-8. PubMed ID: 2009897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amplitude equation approach to spatiotemporal dynamics of cardiac alternans.
    Echebarria B; Karma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051911. PubMed ID: 18233691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of constant-DI pacing on single cell pacing dynamics.
    Parthiban P; Newell S; Tolkacheva EG
    Chaos; 2020 Oct; 30(10):103122. PubMed ID: 33138461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels.
    Zabel M; Koller BS; Sachs F; Franz MR
    Cardiovasc Res; 1996 Jul; 32(1):120-30. PubMed ID: 8776409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular and ionic basis for T-wave alternans under long-QT conditions.
    Shimizu W; Antzelevitch C
    Circulation; 1999 Mar; 99(11):1499-507. PubMed ID: 10086976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.