BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 15255695)

  • 1. Bond dissociation energies for radical dimers derived from highly stabilized carbon-centered radicals.
    Frenette M; Aliaga C; Font-Sanchis E; Scaiano JC
    Org Lett; 2004 Jul; 6(15):2579-82. PubMed ID: 15255695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical prediction of the heats of formation of C2H5O* radicals derived from ethanol and of the kinetics of beta-C-C scission in the ethoxy radical.
    Matus MH; Nguyen MT; Dixon DA
    J Phys Chem A; 2007 Jan; 111(1):113-26. PubMed ID: 17201394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enthalpies of formation, bond dissociation energies, and molecular structures of the n-aldehydes (acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal) and their radicals.
    da Silva G; Bozzelli JW
    J Phys Chem A; 2006 Dec; 110(48):13058-67. PubMed ID: 17134166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steric modulations in the reversible dimerizations of phenalenyl radicals via unusually weak carbon-centered pi- and sigma-bonds.
    Zaitsev V; Rosokha SV; Head-Gordon M; Kochi JK
    J Org Chem; 2006 Jan; 71(2):520-6. PubMed ID: 16408959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemistry of the t-butoxyl radical: evidence that most hydrogen abstractions from carbon are entropy-controlled.
    Finn M; Friedline R; Suleman NK; Wohl CJ; Tanko JM
    J Am Chem Soc; 2004 Jun; 126(24):7578-84. PubMed ID: 15198605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental determination of the alpha and beta C--H bond dissociation energies in naphthalene.
    Reed DR; Kass SR
    J Mass Spectrom; 2000 Apr; 35(4):534-9. PubMed ID: 10797649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote substituent effects on allylic and benzylic bond dissociation energies. Effects on stabilization of parent molecules and radicals.
    Zavitsas AA; Rogers DW; Matsunaga N
    J Org Chem; 2007 Sep; 72(19):7091-101. PubMed ID: 17715965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactions between aromatic hydrocarbons and heterocycles: covalent and proton-bound dimer cations of benzene/pyridine.
    El-Shall MS; Ibrahim YM; Alsharaeh EH; Meot-Ner Mautner M; Watson SP
    J Am Chem Soc; 2009 Jul; 131(29):10066-76. PubMed ID: 19621961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermochemistry, bond energies, and internal rotor potentials of dimethyl tetraoxide.
    da Silva G; Bozzelli JW
    J Phys Chem A; 2007 Nov; 111(47):12026-36. PubMed ID: 17983209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bond dissociation energies in second-row compounds.
    Grant DJ; Matus MH; Switzer JR; Dixon DA; Francisco JS; Christe KO
    J Phys Chem A; 2008 Apr; 112(14):3145-56. PubMed ID: 18351757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shortcomings of basing radical stabilization energies on bond dissociation energies of alkyl groups to hydrogen.
    Zavitsas AA; Rogers DW; Matsunaga N
    J Org Chem; 2010 Aug; 75(16):5697-700. PubMed ID: 20704439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state and laser flash photolysis study of the carbon-carbon bond fragmentation reactions of 2-arylsulfanyl alcohol radical cations.
    Baciocchi E; Giacco TD; Elisei F; Gerini MF; Lapi A; Liberali P; Uzzoli B
    J Org Chem; 2004 Nov; 69(24):8323-30. PubMed ID: 15549803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bond dissociation energies and radical stabilization energies associated with model peptide-backbone radicals.
    Wood GP; Moran D; Jacob R; Radom L
    J Phys Chem A; 2005 Jul; 109(28):6318-25. PubMed ID: 16833974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breathing orbital valence bond method in diffusion Monte Carlo: C-H bond dissociation of acetylene.
    Domin D; Braïda B; Lester WA
    J Phys Chem A; 2008 Sep; 112(38):8964-9. PubMed ID: 18646737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the methoxy carbonyl radical formed via photolysis of methyl chloroformate at 193.3 nm.
    Bell MJ; Lau KC; Krisch MJ; Bennett DI; Butler LJ; Weinhold F
    J Phys Chem A; 2007 Mar; 111(10):1762-70. PubMed ID: 17309241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of the multicenter, long bond in [TCNE]*- and phenalenyl radical dimers: a unified description of multicenter, long bonds.
    Mota F; Miller JS; Novoa JJ
    J Am Chem Soc; 2009 Jun; 131(22):7699-707. PubMed ID: 19441814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1,3 Geminal interactions as the possible trend setting factors for C-H and C-C bond energies in alkanes. Support from a density functional theory based bond energy decomposition study.
    Mitoraj M; Zhu H; Michalak A; Ziegler T
    J Org Chem; 2006 Nov; 71(24):9208-11. PubMed ID: 17109549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homolytic C-H and N-H bond dissociation energies of strained organic compounds.
    Feng Y; Liu L; Wang JT; Zhao SW; Guo QX
    J Org Chem; 2004 Apr; 69(9):3129-38. PubMed ID: 15104452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition metal-carbon complexes. A theoretical study.
    Krapp A; Pandey KK; Frenking G
    J Am Chem Soc; 2007 Jun; 129(24):7596-610. PubMed ID: 17530845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.