BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

619 related articles for article (PubMed ID: 15255983)

  • 1. Kv3 K+ channels enable burst output in rat cerebellar Purkinje cells.
    McKay BE; Turner RW
    Eur J Neurosci; 2004 Aug; 20(3):729-39. PubMed ID: 15255983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iberiotoxin-sensitive large conductance Ca2+ -dependent K+ (BK) channels regulate the spike configuration in the burst firing of cerebellar Purkinje neurons.
    Haghdoost-Yazdi H; Janahmadi M; Behzadi G
    Brain Res; 2008 May; 1212():1-8. PubMed ID: 18439989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.
    Zagha E; Manita S; Ross WN; Rudy B
    J Neurophysiol; 2010 Jun; 103(6):3516-25. PubMed ID: 20357073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kv1 K+ channels control Purkinje cell output to facilitate postsynaptic rebound discharge in deep cerebellar neurons.
    McKay BE; Molineux ML; Mehaffey WH; Turner RW
    J Neurosci; 2005 Feb; 25(6):1481-92. PubMed ID: 15703402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance.
    Swensen AM; Bean BP
    J Neurosci; 2005 Apr; 25(14):3509-20. PubMed ID: 15814781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties and functional role of voltage-dependent potassium channels in dendrites of rat cerebellar Purkinje neurons.
    Martina M; Yao GL; Bean BP
    J Neurosci; 2003 Jul; 23(13):5698-707. PubMed ID: 12843273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific functions of synaptically localized potassium channels in synaptic transmission at the neocortical GABAergic fast-spiking cell synapse.
    Goldberg EM; Watanabe S; Chang SY; Joho RH; Huang ZJ; Leonard CS; Rudy B
    J Neurosci; 2005 May; 25(21):5230-5. PubMed ID: 15917463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kv3.3 channels at the Purkinje cell soma are necessary for generation of the classical complex spike waveform.
    Zagha E; Lang EJ; Rudy B
    J Neurosci; 2008 Feb; 28(6):1291-300. PubMed ID: 18256249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of the propagation of dendritic low-threshold Ca(2+) spikes in Purkinje cells from rat cerebellar slice cultures.
    Cavelier P; Pouille F; Desplantez T; Beekenkamp H; Bossu JL
    J Physiol; 2002 Apr; 540(Pt 1):57-72. PubMed ID: 11927669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic factors governing rebound burst phenotype in rat deep cerebellar neurons.
    Molineux ML; Mehaffey WH; Tadayonnejad R; Anderson D; Tennent AF; Turner RW
    J Neurophysiol; 2008 Nov; 100(5):2684-701. PubMed ID: 18768644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic control of spontaneous bursting in cerebellar Purkinje cells.
    Womack MD; Khodakhah K
    J Neurosci; 2004 Apr; 24(14):3511-21. PubMed ID: 15071098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological characterization of voltage-gated K(+) currents in cerebellar basket and purkinje cells: Kv1 and Kv3 channel subfamilies are present in basket cell nerve terminals.
    Southan AP; Robertson B
    J Neurosci; 2000 Jan; 20(1):114-22. PubMed ID: 10627587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturation of spiking activity in trout retinal ganglion cells coincides with upregulation of Kv3.1- and BK-related potassium channels.
    Henne J; Jeserich G
    J Neurosci Res; 2004 Jan; 75(1):44-54. PubMed ID: 14689447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons.
    Raman IM; Bean BP
    J Neurosci; 1999 Mar; 19(5):1663-74. PubMed ID: 10024353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells.
    Liu X; Stan Leung L
    Brain Res; 2004 Oct; 1023(2):185-92. PubMed ID: 15374744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons.
    Erisir A; Lau D; Rudy B; Leonard CS
    J Neurophysiol; 1999 Nov; 82(5):2476-89. PubMed ID: 10561420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function.
    Edgerton JR; Reinhart PH
    J Physiol; 2003 Apr; 548(Pt 1):53-69. PubMed ID: 12576503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional and molecular analysis of transient voltage-dependent K+ currents in rat hippocampal granule cells.
    Riazanski V; Becker A; Chen J; Sochivko D; Lie A; Wiestler OD; Elger CE; Beck H
    J Physiol; 2001 Dec; 537(Pt 2):391-406. PubMed ID: 11731573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-threshold, Kv3-like potassium currents in magnocellular neurosecretory neurons and their role in spike repolarization.
    Shevchenko T; Teruyama R; Armstrong WE
    J Neurophysiol; 2004 Nov; 92(5):3043-55. PubMed ID: 15240761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of voltage-gated K+ currents contributing to subthreshold membrane potential oscillations in hippocampal CA1 interneurons.
    Morin F; Haufler D; Skinner FK; Lacaille JC
    J Neurophysiol; 2010 Jun; 103(6):3472-89. PubMed ID: 20393060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.