These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 15256213)
1. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Jin YS; Jeffries TW Metab Eng; 2004 Jul; 6(3):229-38. PubMed ID: 15256213 [TBL] [Abstract][Full Text] [Related]
2. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Toivari MH; Aristidou A; Ruohonen L; Penttilä M Metab Eng; 2001 Jul; 3(3):236-49. PubMed ID: 11461146 [TBL] [Abstract][Full Text] [Related]
3. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
4. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
5. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC; Turner TL; Jin YS J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721 [TBL] [Abstract][Full Text] [Related]
6. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. Wahlbom CF; van Zyl WH; Jönsson LJ; Hahn-Hägerdal B; Otero RR FEMS Yeast Res; 2003 May; 3(3):319-26. PubMed ID: 12689639 [TBL] [Abstract][Full Text] [Related]
7. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
9. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Jin YS; Laplaza JM; Jeffries TW Appl Environ Microbiol; 2004 Nov; 70(11):6816-25. PubMed ID: 15528549 [TBL] [Abstract][Full Text] [Related]
10. Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae. Wang Y; Shi WL; Liu XY; Shen Y; Bao XM; Bai FW; Qu YB Biotechnol Lett; 2004 Jun; 26(11):885-90. PubMed ID: 15269535 [TBL] [Abstract][Full Text] [Related]
11. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR; Kwee NR; Kim H; Jin YS FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [TBL] [Abstract][Full Text] [Related]
12. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Suga H; Matsuda F; Hasunuma T; Ishii J; Kondo A Appl Microbiol Biotechnol; 2013 Feb; 97(4):1669-78. PubMed ID: 22851014 [TBL] [Abstract][Full Text] [Related]
13. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Watanabe S; Pack SP; Saleh AA; Annaluru N; Kodaki T; Makino K Biosci Biotechnol Biochem; 2007 May; 71(5):1365-9. PubMed ID: 17485825 [TBL] [Abstract][Full Text] [Related]
14. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Ha SJ; Kim SR; Choi JH; Park MS; Jin YS Appl Microbiol Biotechnol; 2011 Oct; 92(1):77-84. PubMed ID: 21655987 [TBL] [Abstract][Full Text] [Related]
15. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. van Maris AJ; Winkler AA; Kuyper M; de Laat WT; van Dijken JP; Pronk JT Adv Biochem Eng Biotechnol; 2007; 108():179-204. PubMed ID: 17846724 [TBL] [Abstract][Full Text] [Related]
17. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
18. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]