BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15256578)

  • 1. Active domains of salivary statherin on apatitic surfaces for binding to Fusobacterium nucleatum cells.
    Sekine S; Kataoka K; Tanaka M; Nagata H; Kawakami T; Akaji K; Aimoto S; Shizukuishi S
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2373-2379. PubMed ID: 15256578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusobacterium nucleatum envelope protein FomA is immunogenic and binds to the salivary statherin-derived peptide.
    Nakagaki H; Sekine S; Terao Y; Toe M; Tanaka M; Ito HO; Kawabata S; Shizukuishi S; Fujihashi K; Kataoka K
    Infect Immun; 2010 Mar; 78(3):1185-92. PubMed ID: 20008529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural domains of Porphyromonas gingivalis recombinant fimbrillin that mediate binding to salivary proline-rich protein and statherin.
    Amano A; Sharma A; Lee JY; Sojar HT; Raj PA; Genco RJ
    Infect Immun; 1996 May; 64(5):1631-7. PubMed ID: 8613371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of Porphyromonas gingivalis fimbriae to proline-rich glycoproteins in parotid saliva via a domain shared by major salivary components.
    Amano A; Shizukuishi S; Horie H; Kimura S; Morisaki I; Hamada S
    Infect Immun; 1998 May; 66(5):2072-7. PubMed ID: 9573091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salivary receptors for recombinant fimbrillin of Porphyromonas gingivalis.
    Amano A; Sojar HT; Lee JY; Sharma A; Levine MJ; Genco RJ
    Infect Immun; 1994 Aug; 62(8):3372-80. PubMed ID: 8039907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding sites of salivary statherin for Porphyromonas gingivalis recombinant fimbrillin.
    Amano A; Kataoka K; Raj PA; Genco RJ; Shizukuishi S
    Infect Immun; 1996 Oct; 64(10):4249-54. PubMed ID: 8926096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active sites of salivary proline-rich protein for binding to Porphyromonas gingivalis fimbriae.
    Kataoka K; Amano A; Kuboniwa M; Horie H; Nagata H; Shizukuishi S
    Infect Immun; 1997 Aug; 65(8):3159-64. PubMed ID: 9234769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salivary statherin peptide-binding epitopes of commensal and potentially infectious Actinomyces spp. delineated by a hybrid peptide construct.
    Niemi LD; Johansson I
    Infect Immun; 2004 Feb; 72(2):782-7. PubMed ID: 14742521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vitro scanning microradiography study of the reduction in hydroxyapatite demineralization rate by statherin-like peptides as a function of increasing N-terminal length.
    Shah S; Kosoric J; Hector MP; Anderson P
    Eur J Oral Sci; 2011 Dec; 119 Suppl 1():13-8. PubMed ID: 22243221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption behavior of statherin and a statherin peptide onto hydroxyapatite and silica surfaces by in situ ellipsometry.
    Santos O; Kosoric J; Hector MP; Anderson P; Lindh L
    J Colloid Interface Sci; 2008 Feb; 318(2):175-82. PubMed ID: 18054952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization.
    Raj PA; Johnsson M; Levine MJ; Nancollas GH
    J Biol Chem; 1992 Mar; 267(9):5968-76. PubMed ID: 1313424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii to apatitic surfaces.
    Gibbons RJ; Hay DI; Schlesinger DH
    Infect Immun; 1991 Sep; 59(9):2948-54. PubMed ID: 1879920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesive properties of strains of Fusobacterium nucleatum of the subspecies nucleatum, vincentii and polymorphum.
    Xie H; Gibbons RJ; Hay DI
    Oral Microbiol Immunol; 1991 Oct; 6(5):257-63. PubMed ID: 1820561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the carboxyl-terminal region of Porphyromonas gingivalis fimbrillin in binding to salivary proteins.
    Nagata H; Sharma A; Sojar HT; Amano A; Levine MJ; Genco RJ
    Infect Immun; 1997 Feb; 65(2):422-7. PubMed ID: 9009291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attachment of Fusobacterium nucleatum to fibronectin immobilized on gingival epithelial cells or glass coverslips.
    Babu JP; Dean JW; Pabst MJ
    J Periodontol; 1995 Apr; 66(4):285-90. PubMed ID: 7782983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides.
    Xiao Y; Karttunen M; Jalkanen J; Mussi MC; Liao Y; Grohe B; Lagugné-Labarthet F; Siqueira WL
    J Dent Res; 2015 Aug; 94(8):1106-12. PubMed ID: 26116492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrometric identification of key proteolytic cleavage sites in statherin affecting mineral homeostasis and bacterial binding domains.
    Helmerhorst EJ; Traboulsi G; Salih E; Oppenheim FG
    J Proteome Res; 2010 Oct; 9(10):5413-21. PubMed ID: 20731414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statherin: a major boundary lubricant of human saliva.
    Douglas WH; Reeh ES; Ramasubbu N; Raj PA; Bhandary KK; Levine MJ
    Biochem Biophys Res Commun; 1991 Oct; 180(1):91-7. PubMed ID: 1718282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chimeric peptides of statherin and osteopontin that bind hydroxyapatite and mediate cell adhesion.
    Gilbert M; Shaw WJ; Long JR; Nelson K; Drobny GP; Giachelli CM; Stayton PS
    J Biol Chem; 2000 May; 275(21):16213-8. PubMed ID: 10748043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic roles of basic amino acids in statherin recognition of hydroxyapatite.
    Goobes R; Goobes G; Shaw WJ; Drobny GP; Campbell CT; Stayton PS
    Biochemistry; 2007 Apr; 46(16):4725-33. PubMed ID: 17391007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.