BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 15256583)

  • 41. the hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin.
    Almeida RS; Brunke S; Albrecht A; Thewes S; Laue M; Edwards JE; Filler SG; Hube B
    PLoS Pathog; 2008 Nov; 4(11):e1000217. PubMed ID: 19023418
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells.
    Phan QT; Myers CL; Fu Y; Sheppard DC; Yeaman MR; Welch WH; Ibrahim AS; Edwards JE; Filler SG
    PLoS Biol; 2007 Mar; 5(3):e64. PubMed ID: 17311474
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RT-PCR analysis of Candida albicans ALS gene expression in a hyposalivatory rat model of oral candidiasis and in HIV-positive human patients.
    Green CB; Marretta SM; Cheng G; Faddoul FF; Ehrhart EJ; Hoyer LL
    Med Mycol; 2006 Mar; 44(2):103-11. PubMed ID: 16519012
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessing Als3 Peptide-Binding Cavity and Amyloid-Forming Region Contributions to
    Oh SH; Hoyer LL
    Front Cell Infect Microbiol; 2022; 12():890839. PubMed ID: 35909961
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ADH1 promotes Candida albicans pathogenicity by stimulating oxidative phosphorylation.
    Song Y; Li S; Zhao Y; Zhang Y; Lv Y; Jiang Y; Wang Y; Li D; Zhang H
    Int J Med Microbiol; 2019 Sep; 309(6):151330. PubMed ID: 31471070
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins.
    Gaur NK; Klotz SA
    Infect Immun; 1997 Dec; 65(12):5289-94. PubMed ID: 9393828
    [TBL] [Abstract][Full Text] [Related]  

  • 47.
    Jung P; Mischo CE; Gunaratnam G; Spengler C; Becker SL; Hube B; Jacobs K; Bischoff M
    Virulence; 2020 Dec; 11(1):1453-1465. PubMed ID: 33108253
    [No Abstract]   [Full Text] [Related]  

  • 48. Functional regions of Candida albicans hyphal cell wall protein Als3 that determine interaction with the oral bacterium Streptococcus gordonii.
    Bamford CV; Nobbs AH; Barbour ME; Lamont RJ; Jenkinson HF
    Microbiology (Reading); 2015 Jan; 161(Pt 1):18-29. PubMed ID: 25332379
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis.
    Chiang LY; Sheppard DC; Bruno VM; Mitchell AP; Edwards JE; Filler SG
    Cell Microbiol; 2007 Jan; 9(1):233-45. PubMed ID: 16939537
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A monoclonal antibody specific for Candida albicans Als4 demonstrates overlapping localization of Als family proteins on the fungal cell surface and highlights differences between Als localization in vitro and in vivo.
    Coleman DA; Oh SH; Manfra-Maretta SL; Hoyer LL
    FEMS Immunol Med Microbiol; 2012 Apr; 64(3):321-33. PubMed ID: 22106872
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1.
    Staab JF; Bradway SD; Fidel PL; Sundstrom P
    Science; 1999 Mar; 283(5407):1535-8. PubMed ID: 10066176
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9.
    Zhao X; Pujol C; Soll DR; Hoyer LL
    Microbiology (Reading); 2003 Oct; 149(Pt 10):2947-2960. PubMed ID: 14523127
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Constitutive ALS3 expression in Candida albicans enhances adhesion and biofilm formation of efg1, but not cph1 mutant strains.
    Schena NC; Baker KM; Stark AA; Thomas DP; Cleary IA
    PLoS One; 2023; 18(7):e0286547. PubMed ID: 37440498
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Candida albicans Sfl1 suppresses flocculation and filamentation.
    Bauer J; Wendland J
    Eukaryot Cell; 2007 Oct; 6(10):1736-44. PubMed ID: 17766464
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of Candida albicans infection of an in vitro oral epithelial model using confocal laser scanning microscopy.
    Malic S; Hill KE; Ralphs JR; Hayes A; Thomas DW; Potts AJ; Williams DW
    Oral Microbiol Immunol; 2007 Jun; 22(3):188-94. PubMed ID: 17488445
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ura-status-dependent adhesion of Candida albicans mutants.
    Bain JM; Stubberfield C; Gow NA
    FEMS Microbiol Lett; 2001 Nov; 204(2):323-8. PubMed ID: 11731143
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Candida albicans VPS4 contributes differentially to epithelial and mucosal pathogenesis.
    Rane HS; Hardison S; Botelho C; Bernardo SM; Wormley F; Lee SA
    Virulence; 2014; 5(8):810-8. PubMed ID: 25483774
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Potential role of Candida albicans secreted aspartic protease 9 in serum induced-hyphal formation and interaction with oral epithelial cells.
    Yang H; Tsang PCS; Pow EHN; Lam OLT; Tsang PW
    Microb Pathog; 2020 Feb; 139():103896. PubMed ID: 31794816
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adhesion of Candida albicans mutant strains to host tissue.
    Arie ZR; Altboum Z; Sandovsky-Losica H; Segal E
    FEMS Microbiol Lett; 1998 Jun; 163(2):121-7. PubMed ID: 9673013
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p.
    Villar CC; Kashleva H; Nobile CJ; Mitchell AP; Dongari-Bagtzoglou A
    Infect Immun; 2007 May; 75(5):2126-35. PubMed ID: 17339363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.