BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 15256583)

  • 61. Disruption of sphingolipid biosynthetic gene IPT1 reduces Candida albicans adhesion and prevents activation of human gingival epithelial cell innate immune defense.
    Rouabhia M; Mukherjee PK; Lattif AA; Curt S; Chandra J; Ghannoum MA
    Med Mycol; 2011 Jul; 49(5):458-66. PubMed ID: 21091155
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Regulatory role of glycerol in Candida albicans biofilm formation.
    Desai JV; Bruno VM; Ganguly S; Stamper RJ; Mitchell KF; Solis N; Hill EM; Xu W; Filler SG; Andes DR; Fanning S; Lanni F; Mitchell AP
    mBio; 2013 Apr; 4(2):e00637-12. PubMed ID: 23572557
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analysis of ALS5 and ALS6 allelic variability in a geographically diverse collection of Candida albicans isolates.
    Zhao X; Oh SH; Jajko R; Diekema DJ; Pfaller MA; Pujol C; Soll DR; Hoyer LL
    Fungal Genet Biol; 2007 Dec; 44(12):1298-309. PubMed ID: 17625934
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Candida albicans isolates from HIV-infected and AIDS patients exhibit enhanced adherence to epithelial cells.
    Sweet SP; Cookson S; Challacombe SJ
    J Med Microbiol; 1995 Dec; 43(6):452-7. PubMed ID: 7473680
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Novel Aggregation Properties of Candida albicans Secreted Aspartyl Proteinase Sap6 Mediate Virulence in Oral Candidiasis.
    Kumar R; Saraswat D; Tati S; Edgerton M
    Infect Immun; 2015 Jul; 83(7):2614-26. PubMed ID: 25870228
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process.
    Wächtler B; Citiulo F; Jablonowski N; Förster S; Dalle F; Schaller M; Wilson D; Hube B
    PLoS One; 2012; 7(5):e36952. PubMed ID: 22606314
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Temporal expression of the Candida albicans genes CHK1 and CSSK1, adherence, and morphogenesis in a model of reconstituted human esophageal epithelial candidiasis.
    Li D; Bernhardt J; Calderone R
    Infect Immun; 2002 Mar; 70(3):1558-65. PubMed ID: 11854244
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Adhesins in Candida albicans.
    Sundstrom P
    Curr Opin Microbiol; 1999 Aug; 2(4):353-7. PubMed ID: 10458989
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Alternative Oxidase Promotes Biofilm Formation of Candida albicans.
    Wang TM; Xie XH; Li K; Deng YH; Chen H
    Curr Med Sci; 2018 Jun; 38(3):443-448. PubMed ID: 30074210
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo.
    Fanning S; Xu W; Solis N; Woolford CA; Filler SG; Mitchell AP
    Eukaryot Cell; 2012 Jul; 11(7):896-904. PubMed ID: 22544909
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Adhesion and colonisation of Candida krusei on host surfaces.
    Samaranayake YH; Wu PC; Samaranayake LP; So M; Yuen KY
    J Med Microbiol; 1994 Oct; 41(4):250-8. PubMed ID: 7932617
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification of Candida albicans ALS2 and ALS4 and localization of als proteins to the fungal cell surface.
    Hoyer LL; Payne TL; Hecht JE
    J Bacteriol; 1998 Oct; 180(20):5334-43. PubMed ID: 9765564
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells.
    Fu Y; Rieg G; Fonzi WA; Belanger PH; Edwards JE; Filler SG
    Infect Immun; 1998 Apr; 66(4):1783-6. PubMed ID: 9529114
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functional and structural diversity in the Als protein family of Candida albicans.
    Sheppard DC; Yeaman MR; Welch WH; Phan QT; Fu Y; Ibrahim AS; Filler SG; Zhang M; Waring AJ; Edwards JE
    J Biol Chem; 2004 Jul; 279(29):30480-9. PubMed ID: 15128742
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Targeted gene disruption in Candida parapsilosis demonstrates a role for CPAR2_404800 in adhesion to a biotic surface and in a murine model of ascending urinary tract infection.
    Bertini A; Zoppo M; Lombardi L; Rizzato C; De Carolis E; Vella A; Torelli R; Sanguinetti M; Tavanti A
    Virulence; 2016; 7(2):85-97. PubMed ID: 26632333
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Adhesion of Candida parapsilosis to epithelial and acrylic surfaces correlates with cell surface hydrophobicity.
    Panagoda GJ; Ellepola AN; Samaranayake LP
    Mycoses; 2001; 44(1-2):29-35. PubMed ID: 11398638
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparative study of adherence of oral Candida albicans isolates from HIV sero-positive individuals and HIV sero-negative individuals to human buccal epithelial cells.
    Jain PA; Veerabhadrudu K; Kulkarni RD; Ajantha GS; Shubhada C; Amruthkishan U
    Indian J Pathol Microbiol; 2010; 53(3):513-7. PubMed ID: 20699514
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR.
    Nailis H; Coenye T; Van Nieuwerburgh F; Deforce D; Nelis HJ
    BMC Mol Biol; 2006 Aug; 7():25. PubMed ID: 16889665
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions.
    Nobile CJ; Solis N; Myers CL; Fay AJ; Deneault JS; Nantel A; Mitchell AP; Filler SG
    Cell Microbiol; 2008 Nov; 10(11):2180-96. PubMed ID: 18627379
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fungicidal monoclonal antibody C7 binds to Candida albicans Als3.
    Brena S; Omaetxebarría MJ; Elguezabal N; Cabezas J; Moragues MD; Pontón J
    Infect Immun; 2007 Jul; 75(7):3680-2. PubMed ID: 17452471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.