These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15257161)

  • 21. Effects of the vasopressin V1 agonist [Phe2,Ile3,Orn8]] vasopressin on regional kidney perfusion and renal excretory function in anesthetized rabbits.
    Evans RG; Bergström G; Lawrence AJ
    J Cardiovasc Pharmacol; 1998 Oct; 32(4):571-81. PubMed ID: 9781925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vasopressin modulation of medullary blood flow and pressure-natriuresis-diuresis in the decerebrated rat.
    Franchini KG; Mattson DL; Cowley AW
    Am J Physiol; 1997 May; 272(5 Pt 2):R1472-9. PubMed ID: 9176339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superoxide dismustase mimetic tempol decreases blood pressure by increasing renal medullary blood flow in hyperinsulinemic-hypertensive rats.
    Onuma S; Nakanishi K
    Metabolism; 2004 Oct; 53(10):1305-8. PubMed ID: 15375786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of activation of vasopressin-V1-receptors on regional kidney blood flow and glomerular arteriole diameters.
    Correia AG; Denton KM; Evans RG
    J Hypertens; 2001 Mar; 19(3 Pt 2):649-57. PubMed ID: 11327642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional role of ETB receptors in the renal medulla.
    Vassileva I; Mountain C; Pollock DM
    Hypertension; 2003 Jun; 41(6):1359-63. PubMed ID: 12719443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinin influences on renal regional blood flow responses to angiotensin-converting enzyme inhibition in dogs.
    Omoro SA; Majid DS; El-Dahr SS; Navar LG
    Am J Physiol; 1999 Feb; 276(2):F271-7. PubMed ID: 9950958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow.
    O'Connor PM; Kett MM; Anderson WP; Evans RG
    Am J Physiol Renal Physiol; 2006 Mar; 290(3):F688-94. PubMed ID: 16219913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitric oxide in responses of regional kidney perfusion to renal nerve stimulation and renal ischaemia.
    Eppel GA; Denton KM; Malpas SC; Evans RG
    Pflugers Arch; 2003 Nov; 447(2):205-13. PubMed ID: 12905035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local renal medullary L-NAME infusion enhances the effect of long-term angiotensin II treatment.
    Szentiványi M; Maeda CY; Cowley AW
    Hypertension; 1999 Jan; 33(1 Pt 2):440-5. PubMed ID: 9931144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pericyte regulation of renal medullary blood flow.
    Pallone TL; Silldorff EP
    Exp Nephrol; 2001; 9(3):165-70. PubMed ID: 11340300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pressure natriuresis and autoregulation of inner medullary blood flow in canine kidney.
    Majid DS; Godfrey M; Omoro SA
    Hypertension; 1997 Jan; 29(1 Pt 2):210-5. PubMed ID: 9039104
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions between nitric oxide and angiotensin II on renal cortical and papillary blood flow.
    Madrid MI; García-Salom M; Tornel J; de Gasparo M; Fenoy FJ
    Hypertension; 1997 Nov; 30(5):1175-82. PubMed ID: 9369273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential regulation of renal regional blood flow by endothelin-1.
    Gurbanov K; Rubinstein I; Hoffman A; Abassi Z; Better OS; Winaver J
    Am J Physiol; 1996 Dec; 271(6 Pt 2):F1166-72. PubMed ID: 8997390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disparate roles of AT2 receptors in the renal cortical and medullary circulations of anesthetized rabbits.
    Duke LM; Eppel GA; Widdop RE; Evans RG
    Hypertension; 2003 Aug; 42(2):200-5. PubMed ID: 12847115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Renal hemodynamic responses to intrarenal infusion of acetylcholine: comparison with effects of PGE2 and NO donor.
    Badzyńska B; Sadowski J
    Kidney Int; 2006 May; 69(10):1774-9. PubMed ID: 16572111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regional responsiveness of renal perfusion to activation of the renal nerves.
    Guild SJ; Eppel GA; Malpas SC; Rajapakse NW; Stewart A; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2002 Nov; 283(5):R1177-86. PubMed ID: 12376411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the renal medulla in volume and arterial pressure regulation.
    Cowley AW
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R1-15. PubMed ID: 9249526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms underlying the antihypertensive functions of the renal medulla.
    Bergström G; Evans RG
    Acta Physiol Scand; 2004 Aug; 181(4):475-86. PubMed ID: 15283761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The renal medullary microcirculation.
    Edwards A; Silldforff EP; Pallone TL
    Front Biosci; 2000 Jun; 5():E36-52. PubMed ID: 10833463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Renal tissue NO and intrarenal haemodynamics during experimental variations of NO content in anaesthetised rats.
    Grzelec-Mojzesowicz M; Sadowski J
    J Physiol Pharmacol; 2007 Mar; 58(1):149-63. PubMed ID: 17440233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.