These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 15257161)

  • 41. Furosemide-induced renal medullary hypoperfusion in the rat: role of tissue tonicity, prostaglandins and angiotensin II.
    Dobrowolski L; Sadowski J
    J Physiol; 2005 Sep; 567(Pt 2):613-20. PubMed ID: 15961422
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Medullary blood flow responses to changes in arterial pressure in canine kidney.
    Majid DS; Navar LG
    Am J Physiol; 1996 May; 270(5 Pt 2):F833-8. PubMed ID: 8928845
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Endothelial nitric oxide synthase protein is reduced in the renal medulla of two-kidney, one-clip hypertensive rats.
    Wickman A; Andersson IJ; Jia J; Hedin L; Bergström G
    J Hypertens; 2001 Sep; 19(9):1665-73. PubMed ID: 11564988
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Salt-sensitive hypertension in conscious rats induced by chronic nitric oxide blockade.
    Nakanishi K; Hara N; Nagai Y
    Am J Hypertens; 2002 Feb; 15(2 Pt 1):150-6. PubMed ID: 11863250
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production and actions of superoxide in the renal medulla.
    Zou AP; Li N; Cowley AW
    Hypertension; 2001 Feb; 37(2 Pt 2):547-53. PubMed ID: 11230333
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of renal NO production in the regulation of medullary blood flow.
    Cowley AW; Mori T; Mattson D; Zou AP
    Am J Physiol Regul Integr Comp Physiol; 2003 Jun; 284(6):R1355-69. PubMed ID: 12736168
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Early effects of renal denervation in the anaesthetised rat: natriuresis and increased cortical blood flow.
    Kompanowska-Jezierska E; Walkowska A; Johns EJ; Sadowski J
    J Physiol; 2001 Mar; 531(Pt 2):527-34. PubMed ID: 11230524
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of daily sodium intake and ANG II on cortical and medullary renal blood flow in conscious rats.
    Gross V; Kurth TM; Skelton MM; Mattson DL; Cowley AW
    Am J Physiol; 1998 May; 274(5):R1317-23. PubMed ID: 9644045
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential effects of 20-hydroxyeicosatetraenoic acid on intrarenal blood flow in the rat.
    Oyekan AO
    J Pharmacol Exp Ther; 2005 Jun; 313(3):1289-95. PubMed ID: 15769866
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Renal medullary circulation: morphological characteristics of vessels and their organization].
    Kriz W
    Klin Wochenschr; 1982 Sep; 60(18):1063-9. PubMed ID: 7144053
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of renal medullary circulation by the renin-angiotensin system in genetically hypertensive rats.
    Liu KL
    Clin Exp Pharmacol Physiol; 2009 May; 36(5-6):455-61. PubMed ID: 19215237
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Opposed effects of prostaglandin E2 on perfusion of rat renal cortex and medulla: interactions with the renin-angiotensin system.
    Badzynska B; Sadowski J
    Exp Physiol; 2008 Dec; 93(12):1292-302. PubMed ID: 18586855
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Renal intramedullary infusion of L-arginine prevents reduction of medullary blood flow and hypertension in Dahl salt-sensitive rats.
    Miyata N; Cowley AW
    Hypertension; 1999 Jan; 33(1 Pt 2):446-50. PubMed ID: 9931145
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physiology of the renal medullary microcirculation.
    Pallone TL; Zhang Z; Rhinehart K
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F253-66. PubMed ID: 12529271
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of chronic renal medullary nitric oxide inhibition on blood pressure.
    Mattson DL; Lu S; Nakanishi K; Papanek PE; Cowley AW
    Am J Physiol; 1994 May; 266(5 Pt 2):H1918-26. PubMed ID: 8203591
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of ATP on rat renal haemodynamics and excretion: role of sodium intake, nitric oxide and cytochrome P450.
    Dobrowolski L; Walkowska A; Kompanowska-Jezierska E; Kuczeriszka M; Sadowski J
    Acta Physiol (Oxf); 2007 Jan; 189(1):77-85. PubMed ID: 17280559
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Renal medullary circulation: hormonal control.
    Chou SY; Porush JG; Faubert PF
    Kidney Int; 1990 Jan; 37(1):1-13. PubMed ID: 2137185
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ischemic Renal Injury: Can Renal Anatomy and Associated Vascular Congestion Explain Why the Medulla and Not the Cortex Is Where the Trouble Starts?
    Ray SC; Mason J; O'Connor PM
    Semin Nephrol; 2019 Nov; 39(6):520-529. PubMed ID: 31836035
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Roles of AT1 and AT2 receptors in the hypertensive Ren-2 gene transgenic rat kidney.
    Zhuo J; Ohishi M; Mendelsohn FA
    Hypertension; 1999 Jan; 33(1 Pt 2):347-53. PubMed ID: 9931128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.