These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15257161)

  • 61. Influence of verapamil on regional renal blood flow: a study using multichannel laser-Doppler flowmetry.
    Hansell P; Nygren A; Ueda J
    Acta Physiol Scand; 1990 May; 139(1):15-20. PubMed ID: 2192538
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Centrogenic arterial hypertension and local renal blood flow: evidence of nervous regulation of medullary circulation].
    Ganich IuIa; Suchkov VV; Kreer AKh; Keler M
    Fiziol Zh SSSR Im I M Sechenova; 1984 Jan; 70(1):48-55. PubMed ID: 6698251
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Localization of the vasopressin V1a and V2 receptors within the renal cortical and medullary circulation.
    Park F; Mattson DL; Skelton MM; Cowley AW
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R243-51. PubMed ID: 9249556
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Renal medullary circulation.
    Pallone TL; Edwards A; Mattson DL
    Compr Physiol; 2012 Jan; 2(1):97-140. PubMed ID: 23728972
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Renal haemodynamic effects of endothelin-1 and the ETA/ETB antagonist TAK-044 in anaesthetized rabbits.
    Evans RG; Bergström G; Cotterill E; Anderson WP
    J Hypertens; 1998 Dec; 16(12 Pt 2):1897-905. PubMed ID: 9886875
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Functional characterization of isolated, perfused outermedullary descending human vasa recta.
    Sendeski MM; Liu ZZ; Perlewitz A; Busch JF; Ikromov O; Weikert S; Persson PB; Patzak A
    Acta Physiol (Oxf); 2013 May; 208(1):50-6. PubMed ID: 23414239
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Role of kinins and angiotensin II in the renal hemodynamic response to captopril.
    Mattson DL; Roman RJ
    Am J Physiol; 1991 May; 260(5 Pt 2):F670-9. PubMed ID: 2035654
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Intrarenal vasodilator systems: NO, prostaglandins and bradykinin. An integrative approach.
    Sadowski J; Badzynska B
    J Physiol Pharmacol; 2008 Dec; 59 Suppl 9():105-19. PubMed ID: 19261975
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Differing effects of enalapril and losartan on renal medullary blood flow and renal interstitial hydrostatic pressure in spontaneously hypertensive rats.
    Dukacz SA; Kline RL
    J Hypertens; 1999 Sep; 17(9):1345-52. PubMed ID: 10489114
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Differential effect of endothelin-1 on renal regional blood flow: role of nitric oxide.
    Rubinstein I; Gurbanov K; Hoffman A; Better OS; Winaver J
    J Cardiovasc Pharmacol; 1995; 26 Suppl 3():S208-10. PubMed ID: 8587364
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Renal handling of X-ray contrast media imaging and exploration with electron beam CT.
    Rule AD; Bajzer Z; Ritman EL; Lerman LO
    Ann N Y Acad Sci; 2002 Oct; 972():317-24. PubMed ID: 12496035
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The renal medulla and hypertension.
    Cowley AW; Mattson DL; Lu S; Roman RJ
    Hypertension; 1995 Apr; 25(4 Pt 2):663-73. PubMed ID: 7721413
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Intrarenal distribution of blood flow in sodium depleted and sodium loaded rats: role of nitric oxide.
    Hably C; Vág J; Tost H; Csabai Z; Bartha J
    Kidney Blood Press Res; 2001; 24(3):166-75. PubMed ID: 11528209
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of the renal medullary circulation on the control of sodium excretion.
    Roman RJ; Zou AP
    Am J Physiol; 1993 Nov; 265(5 Pt 2):R963-73. PubMed ID: 8238625
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Osmotic hypertonicity of the renal medulla during changes in renal perfusion pressure in the rat.
    Dobrowolski L; Badzyńska B; Walkowska A; Sadowski J
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):929-35. PubMed ID: 9518743
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Importance of the renal medullary circulation in the control of sodium excretion and blood pressure.
    Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2003 Jan; 284(1):R13-27. PubMed ID: 12482743
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of renal medullary blood flow in the development of L-NAME hypertension in rats.
    Nakanishi K; Mattson DL; Cowley AW
    Am J Physiol; 1995 Feb; 268(2 Pt 2):R317-23. PubMed ID: 7864223
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The evolving role of renal pericytes.
    Peppiatt-Wildman CM
    Curr Opin Nephrol Hypertens; 2013 Jan; 22(1):10-6. PubMed ID: 23165111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.