These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

822 related articles for article (PubMed ID: 15258124)

  • 1. Muscle mechanical advantage of human walking and running: implications for energy cost.
    Biewener AA; Farley CT; Roberts TJ; Temaner M
    J Appl Physiol (1985); 2004 Dec; 97(6):2266-74. PubMed ID: 15258124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR; Sasaki K
    J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What determines the metabolic cost of human running across a wide range of velocities?
    Kipp S; Grabowski AM; Kram R
    J Exp Biol; 2018 Sep; 221(Pt 18):. PubMed ID: 30065039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments.
    Griffin TM; Roberts TJ; Kram R
    J Appl Physiol (1985); 2003 Jul; 95(1):172-83. PubMed ID: 12794096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of human bipedal gallop: asymmetry dictates leg function.
    Fiers P; De Clercq D; Segers V; Aerts P
    J Exp Biol; 2013 Apr; 216(Pt 7):1338-49. PubMed ID: 23239890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus).
    Gillis GB; Biewener AA
    J Exp Biol; 2001 Aug; 204(Pt 15):2717-31. PubMed ID: 11533122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moment and power of lower limb joints in running.
    Belli A; Kyröläinen H; Komi PV
    Int J Sports Med; 2002 Feb; 23(2):136-41. PubMed ID: 11842362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons.
    Nuckols RW; Takahashi KZ; Farris DJ; Mizrachi S; Riemer R; Sawicki GS
    PLoS One; 2020; 15(8):e0231996. PubMed ID: 32857774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle force production during bent-knee, bent-hip walking in humans.
    Foster AD; Raichlen DA; Pontzer H
    J Hum Evol; 2013 Sep; 65(3):294-302. PubMed ID: 23928351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association between energy cost of walking, muscle activation, and biomechanical parameters in older female fallers and non-fallers.
    Marques NR; LaRoche DP; Hallal CZ; Crozara LF; Morcelli MH; Karuka AH; Navega MT; Gonçalves M
    Clin Biomech (Bristol, Avon); 2013 Mar; 28(3):330-6. PubMed ID: 23391513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.
    Ericson M
    Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of mechanically and physiologically imposed stiff-knee gait patterns on the energy cost of walking.
    Lewek MD; Osborn AJ; Wutzke CJ
    Arch Phys Med Rehabil; 2012 Jan; 93(1):123-8. PubMed ID: 22200391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging and running experience affects the gearing in the musculoskeletal system of the lower extremities while walking.
    Karamanidis K; Arampatzis A
    Gait Posture; 2007 Apr; 25(4):590-6. PubMed ID: 16934980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of running speed on lower limb joint kinetics.
    Schache AG; Blanch PD; Dorn TW; Brown NA; Rosemond D; Pandy MG
    Med Sci Sports Exerc; 2011 Jul; 43(7):1260-71. PubMed ID: 21131859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans.
    Nilsson J; Thorstensson A; Halbertsma J
    Acta Physiol Scand; 1985 Apr; 123(4):457-75. PubMed ID: 3993402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds.
    Silverman AK; Fey NP; Portillo A; Walden JG; Bosker G; Neptune RR
    Gait Posture; 2008 Nov; 28(4):602-9. PubMed ID: 18514526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.