These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15258140)

  • 1. The yeast phospholipid N-methyltransferases catalyzing the synthesis of phosphatidylcholine preferentially convert di-C16:1 substrates both in vivo and in vitro.
    Boumann HA; Chin PT; Heck AJ; De Kruijff B; De Kroon AI
    J Biol Chem; 2004 Sep; 279(39):40314-9. PubMed ID: 15258140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast phosphatidylethanolamine methylation pathway. Cloning and characterization of two distinct methyltransferase genes.
    Kodaki T; Yamashita S
    J Biol Chem; 1987 Nov; 262(32):15428-35. PubMed ID: 2445736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The two biosynthetic routes leading to phosphatidylcholine in yeast produce different sets of molecular species. Evidence for lipid remodeling.
    Boumann HA; Damen MJ; Versluis C; Heck AJ; de Kruijff B; de Kroon AI
    Biochemistry; 2003 Mar; 42(10):3054-9. PubMed ID: 12627972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative activity of phospholipid-N-methyltransferases localized in different membranes.
    Janssen MJ; de Jong HM; de Kruijff B; de Kroon AI
    FEBS Lett; 2002 Feb; 513(2-3):197-202. PubMed ID: 11904150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The selective utilization of substrates in vivo by the phosphatidylethanolamine and phosphatidylcholine biosynthetic enzymes Ept1p and Cpt1p in yeast.
    Boumann HA; de Kruijff B; Heck AJ; de Kroon AI
    FEBS Lett; 2004 Jul; 569(1-3):173-7. PubMed ID: 15225629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phosphatidylethanolamine methyltransferase and phospholipid methyltransferase by phospholipid precursors in Saccharomyces cerevisiae.
    Gaynor PM; Gill T; Toutenhoofd S; Summers EF; McGraw P; Homann MJ; Henry SA; Carman GM
    Biochim Biophys Acta; 1991 Nov; 1090(3):326-32. PubMed ID: 1954254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity of rat hepatic phosphatidylethanolamine N-methyltransferase for molecular species of diacyl phosphatidylethanolamine.
    Ridgway ND; Vance DE
    J Biol Chem; 1988 Nov; 263(32):16856-63. PubMed ID: 3182818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and properties of phosphatidyl-N-monomethylethanolamine N-methyltransferase, the enzyme catalyzing the second and the third steps in the phosphatidylethanolamine N-methyltransferase system, from mouse liver microsomes.
    Tanaka Y; Amano F; Maeda M; Nishijima M; Akamatsu Y
    Jpn J Med Sci Biol; 1990 Jun; 43(3):59-73. PubMed ID: 2126577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Petit-High Pressure Carbon Dioxide stress increases synthesis of S-Adenosylmethionine and phosphatidylcholine in yeast Saccharomyces cerevisiae.
    Niu L; Nomura K; Iwahashi H; Matsuoka H; Kawachi S; Suzuki Y; Tamura K
    Biophys Chem; 2017 Dec; 231():79-86. PubMed ID: 28314628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid
    Kleetz J; Welter L; Mizza AS; Aktas M; Narberhaus F
    Appl Environ Microbiol; 2021 Sep; 87(19):e0110521. PubMed ID: 34288711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo evidence for the specificity of Plasmodium falciparum phosphoethanolamine methyltransferase and its coupling to the Kennedy pathway.
    Pessi G; Choi JY; Reynolds JM; Voelker DR; Mamoun CB
    J Biol Chem; 2005 Apr; 280(13):12461-6. PubMed ID: 15664981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylethanolamine methyltransferase and phospholipid methyltransferase activities from Saccharomyces cerevisiae. Enzymological and kinetic properties.
    Gaynor PM; Carman GM
    Biochim Biophys Acta; 1990 Jul; 1045(2):156-63. PubMed ID: 2198947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A component of genetic variation among mice in activity of transmembrane methyltransferase I determined by the H-2 region.
    Markovac J; Erickson RP
    Biochem Pharmacol; 1985 Oct; 34(19):3421-5. PubMed ID: 4052092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The topology of the ER-resident phospholipid methyltransferase Opi3 of
    Pawlik G; Renne MF; Kol MA; de Kroon AIPM
    J Biol Chem; 2020 Feb; 295(8):2473-2482. PubMed ID: 31932304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation and remodeling of extracellular phosphatidylcholine with short acyl residues in Saccharomyces cerevisiae.
    Tanaka K; Fukuda R; Ono Y; Eguchi H; Nagasawa S; Nakatani Y; Watanabe H; Nakanishi H; Taguchi R; Ohta A
    Biochim Biophys Acta; 2008 Aug; 1781(8):391-9. PubMed ID: 18599377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae.
    Flis VV; Fankl A; Ramprecht C; Zellnig G; Leitner E; Hermetter A; Daum G
    PLoS One; 2015; 10(8):e0135084. PubMed ID: 26241051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae cho2 mutants are deficient in phospholipid methylation and cross-pathway regulation of inositol synthesis.
    Summers EF; Letts VA; McGraw P; Henry SA
    Genetics; 1988 Dec; 120(4):909-22. PubMed ID: 3066687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhizobium meliloti mutants deficient in phospholipid N-methyltransferase still contain phosphatidylcholine.
    de Rudder KE; Thomas-Oates JE; Geiger O
    J Bacteriol; 1997 Nov; 179(22):6921-8. PubMed ID: 9371435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the methyltransferases in the yeast phosphatidylethanolamine methylation pathway by selective gene disruption.
    Kodaki T; Yamashita S
    Eur J Biochem; 1989 Nov; 185(2):243-51. PubMed ID: 2684666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-adenosyl-L-homocysteine hydrolase, key enzyme of methylation metabolism, regulates phosphatidylcholine synthesis and triacylglycerol homeostasis in yeast: implications for homocysteine as a risk factor of atherosclerosis.
    Malanovic N; Streith I; Wolinski H; Rechberger G; Kohlwein SD; Tehlivets O
    J Biol Chem; 2008 Aug; 283(35):23989-99. PubMed ID: 18591246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.