BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15258370)

  • 1. Hemorheological and hemodynamic effects of high molecular weight polyethylene oxide solutions.
    Antonova N; Lazarov Z
    Clin Hemorheol Microcirc; 2004; 30(3-4):381-90. PubMed ID: 15258370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypertonic-hyperoncotic solutions improve cardiac function in children after open-heart surgery.
    Schroth M; Plank C; Meissner U; Eberle KP; Weyand M; Cesnjevar R; Dötsch J; Rascher W
    Pediatrics; 2006 Jul; 118(1):e76-84. PubMed ID: 16751617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of maleimide-polyethylene glycol hemoglobin (MP4) on hemodynamics and acid-base status after uncontrolled hemorrhage in anesthetized swine: comparison with crystalloid and blood.
    Young MA; Riddez L; Kjellström BT; Winslow RM
    J Trauma; 2007 Dec; 63(6):1234-44. PubMed ID: 18212644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological characterization of poly(ethylene oxide) solutions of different molecular weights.
    Ebagninin KW; Benchabane A; Bekkour K
    J Colloid Interface Sci; 2009 Aug; 336(1):360-7. PubMed ID: 19406425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hemodynamic effect of calcium ion concentration in the infusate during predilution hemofiltration in chronic renal failure.
    Karamperis N; Sloth E; Jensen JD
    Am J Kidney Dis; 2005 Sep; 46(3):470-80. PubMed ID: 16129209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the microcirculation in the acute ischemic rat limb during intravenous infusion of drag-reducing polymers.
    Hu F; Zha D; Du R; Chen X; Zhou B; Xiu J; Bin J; Liu Y
    Biorheology; 2011; 48(3-4):149-59. PubMed ID: 22156030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemorheology and vascular control mechanisms.
    Baskurt OK; Yalcin O; Meiselman HJ
    Clin Hemorheol Microcirc; 2004; 30(3-4):169-78. PubMed ID: 15258340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Association between the hemodynamic and rheological parameters in the micro blood vessels in vivo].
    Mamisashvili VA; Mchedlishvili NT; Chachanidze ET; Urotadze KN
    Georgian Med News; 2005 Feb; (119):68-70. PubMed ID: 15834187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haemodynamic effects of vasoactive agents following chronic state of high cardiac output in anaesthetized rats.
    Guo L; Tabrizchi R
    Eur J Pharmacol; 2008 May; 586(1-3):266-74. PubMed ID: 18367170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The hemodynamic effects of bencyclane].
    Szekeres L
    Arzneimittelforschung; 1970 Oct; 20(10):Suppl 10a:1362+. PubMed ID: 5536639
    [No Abstract]   [Full Text] [Related]  

  • 11. Hemodynamic effects of experimental hypercitremia.
    Corbascio AN; Smith NT
    Anesthesiology; 1967; 28(3):510-6. PubMed ID: 6023523
    [No Abstract]   [Full Text] [Related]  

  • 12. [A drop in "apparent" blood viscosity due to administration of high-molecular polymer capable of augmenting viscosity].
    Grigorian SS; Sokolova IA; Shakhnazarov AA; Timkina MI; Proskurin SG; Priezzhev AV
    Ross Fiziol Zh Im I M Sechenova; 2005 Jan; 91(1):46-52. PubMed ID: 15773579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction.
    Ismailov RM
    Theor Biol Med Model; 2005 Mar; 2():13. PubMed ID: 15799779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of polyethylene oxide at different concentrations on abdominal aortic blood flow and vascular resistance in rats].
    Hu F; DU RS; Zha DG; Chen XH; Li SH; Zhou BJ; Liu YL
    Nan Fang Yi Ke Da Xue Xue Bao; 2010 Apr; 30(4):884-7. PubMed ID: 20423873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The effect of Hongjingtian (Gadol) injection on cardiac hemodynamics and myocardial oxygen consumption of dogs].
    Zhang ZH; Liu JS; Chu JN; Shang XH; Lin CR; Ma XB; Shi TR; Wang M; Wang YH; Li YR; Liu JH; Wu XY; Zhang XD; Zhang DS; Zhao ZH
    Zhongguo Zhong Yao Za Zhi; 2005 Jul; 30(13):1001-5. PubMed ID: 16161429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular self-organization in PEO-modified C60 fullerene/water solutions: influence of polymer molecular weight and nanoparticle concentration.
    Hooper JB; Bedrov D; Smith GD
    Langmuir; 2008 May; 24(9):4550-7. PubMed ID: 18402490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Hemodynamic and rheological effects of polyetox in rats with crush syndrome].
    Plotnikov MB; Chernyshova GA; Smol'iakova VI; Aliev OI; Sutormina TG
    Eksp Klin Farmakol; 2004; 67(3):21-5. PubMed ID: 15341062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of low-volume hemoglobin glutamer-200 versus normal saline and arginine vasopressin resuscitation on systemic and skeletal muscle blood flow and oxygenation in a canine hemorrhagic shock model.
    Driessen B; Zarucco L; Gunther RA; Burns PM; Lamb SV; Vincent SE; Boston RA; Jahr JS; Cheung AT
    Crit Care Med; 2007 Sep; 35(9):2101-9. PubMed ID: 17581486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac output and other hemodynamic variables in anesthetized dogs undergoing laparotomy because of abdominal neoplasia.
    Wagner AE; Miyake Y
    J Am Vet Med Assoc; 2008 Feb; 232(4):547-52. PubMed ID: 18279089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local and systemic hemorheological effects of cerebral hyper- and hypoperfusion in a porcine model.
    Nemeth N; Soukup J; Menzel M; Henze D; Clausen T; Rieger A; Holz C; Scharf A; Hanisch F; Furka I; Miko I
    Clin Hemorheol Microcirc; 2006; 35(1-2):59-65. PubMed ID: 16899907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.