These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 15258584)
1. A constitutively active cryptochrome in Drosophila melanogaster. Dissel S; Codd V; Fedic R; Garner KJ; Costa R; Kyriacou CP; Rosato E Nat Neurosci; 2004 Aug; 7(8):834-40. PubMed ID: 15258584 [TBL] [Abstract][Full Text] [Related]
2. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks. Ivanchenko M; Stanewsky R; Giebultowicz JM J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780 [TBL] [Abstract][Full Text] [Related]
3. Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY. Rosato E; Codd V; Mazzotta G; Piccin A; Zordan M; Costa R; Kyriacou CP Curr Biol; 2001 Jun; 11(12):909-17. PubMed ID: 11448767 [TBL] [Abstract][Full Text] [Related]
4. Disruption of Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila. Collins BH; Dissel S; Gaten E; Rosato E; Kyriacou CP Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19021-6. PubMed ID: 16361445 [TBL] [Abstract][Full Text] [Related]
5. Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light. Yoshii T; Funada Y; Ibuki-Ishibashi T; Matsumoto A; Tanimura T; Tomioka K J Insect Physiol; 2004 Jun; 50(6):479-88. PubMed ID: 15183277 [TBL] [Abstract][Full Text] [Related]
6. Photic signaling by cryptochrome in the Drosophila circadian system. Lin FJ; Song W; Meyer-Bernstein E; Naidoo N; Sehgal A Mol Cell Biol; 2001 Nov; 21(21):7287-94. PubMed ID: 11585911 [TBL] [Abstract][Full Text] [Related]
8. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Stanewsky R; Kaneko M; Emery P; Beretta B; Wager-Smith K; Kay SA; Rosbash M; Hall JC Cell; 1998 Nov; 95(5):681-92. PubMed ID: 9845370 [TBL] [Abstract][Full Text] [Related]
9. Veela defines a molecular link between Cryptochrome and Timeless in the light-input pathway to Drosophila's circadian clock. Peschel N; Veleri S; Stanewsky R Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17313-8. PubMed ID: 17068124 [TBL] [Abstract][Full Text] [Related]
10. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Busza A; Emery-Le M; Rosbash M; Emery P Science; 2004 Jun; 304(5676):1503-6. PubMed ID: 15178801 [TBL] [Abstract][Full Text] [Related]
11. Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. Veleri S; Rieger D; Helfrich-Förster C; Stanewsky R J Biol Rhythms; 2007 Feb; 22(1):29-42. PubMed ID: 17229923 [TBL] [Abstract][Full Text] [Related]
12. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Emery P; So WV; Kaneko M; Hall JC; Rosbash M Cell; 1998 Nov; 95(5):669-79. PubMed ID: 9845369 [TBL] [Abstract][Full Text] [Related]
13. Clock-gated photic stimulation of timeless expression at cold temperatures and seasonal adaptation in Drosophila. Chen WF; Majercak J; Edery I J Biol Rhythms; 2006 Aug; 21(4):256-71. PubMed ID: 16864646 [TBL] [Abstract][Full Text] [Related]
14. Period gene expression in four neurons is sufficient for rhythmic activity of Drosophila melanogaster under dim light conditions. Rieger D; Wülbeck C; Rouyer F; Helfrich-Förster C J Biol Rhythms; 2009 Aug; 24(4):271-82. PubMed ID: 19625729 [TBL] [Abstract][Full Text] [Related]
15. Ectopic CRYPTOCHROME renders TIM light sensitive in the Drosophila ovary. Rush BL; Murad A; Emery P; Giebultowicz JM J Biol Rhythms; 2006 Aug; 21(4):272-8. PubMed ID: 16864647 [TBL] [Abstract][Full Text] [Related]
16. PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila. Kaushik R; Nawathean P; Busza A; Murad A; Emery P; Rosbash M PLoS Biol; 2007 Jun; 5(6):e146. PubMed ID: 17535111 [TBL] [Abstract][Full Text] [Related]
17. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Ceriani MF; Darlington TK; Staknis D; Más P; Petti AA; Weitz CJ; Kay SA Science; 1999 Jul; 285(5427):553-6. PubMed ID: 10417378 [TBL] [Abstract][Full Text] [Related]
18. A Tug-of-War between Cryptochrome and the Visual System Allows the Adaptation of Evening Activity to Long Photoperiods in Drosophila melanogaster. Kistenpfennig C; Nakayama M; Nihara R; Tomioka K; Helfrich-Förster C; Yoshii T J Biol Rhythms; 2018 Feb; 33(1):24-34. PubMed ID: 29179610 [TBL] [Abstract][Full Text] [Related]
19. Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. Shafer OT; Rosbash M; Truman JW J Neurosci; 2002 Jul; 22(14):5946-54. PubMed ID: 12122057 [TBL] [Abstract][Full Text] [Related]