These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 1525859)

  • 1. Mitotic hyperploidy for chromosomes VIII and III in Saccharomyces cerevisiae.
    Spector LM; Fogel S
    Curr Genet; 1992 Apr; 21(4-5):309-18. PubMed ID: 1525859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The detection of mitotic and meiotic aneuploidy in yeast using a gene dosage selection system.
    Whittaker SG; Rockmill BM; Blechl AE; Maloney DH; Resnick MA; Fogel S
    Mol Gen Genet; 1988 Dec; 215(1):10-8. PubMed ID: 3071734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The detection of mitotic and meiotic chromosome gain in the yeast Saccharomyces cerevisiae: effects of methyl benzimidazol-2-yl carbamate, methyl methanesulfonate, ethyl methanesulfonate, dimethyl sulfoxide, propionitrile and cyclophosphamide monohydrate.
    Whittaker SG; Moser SF; Maloney DH; Piegorsch WW; Resnick MA; Fogel S
    Mutat Res; 1990 Nov; 242(3):231-58. PubMed ID: 2270095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential chromosome control of ploidy in the yeast Saccharomyces cerevisiae.
    Waghmare SK; Bruschi CV
    Yeast; 2005 Jun; 22(8):625-39. PubMed ID: 16034824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast.
    Kadowaki M; Fujimaru Y; Taguchi S; Ferdouse J; Sawada K; Kimura Y; Terasawa Y; Agrimi G; Anai T; Noguchi H; Toyoda A; Fujiyama A; Akao T; Kitagaki H
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chromosomal constitution of wine strains of Saccharomyces cerevisiae.
    Bakalinsky AT; Snow R
    Yeast; 1990; 6(5):367-82. PubMed ID: 2220073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a mutation in yeast causing nonrandom chromosome loss during mitosis.
    Liras P; McCusker J; Mascioli S; Haber JE
    Genetics; 1978 Apr; 88(4 Pt 1):651-71. PubMed ID: 17176533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitotic chromosome loss in a disomic haploid of Saccharomyces cerevisiae.
    Campbell DA; Fogel S; Lusnak K
    Genetics; 1975 Mar; 79(3):383-96. PubMed ID: 1092597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation.
    Jehn B; Niedenthal R; Hegemann JH
    Mol Cell Biol; 1991 Oct; 11(10):5212-21. PubMed ID: 1922041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of chromosome loss with centromere-adjacent mitotic recombination in a yeast disomic haploid.
    Campbell DA; Fogel S
    Genetics; 1977 Apr; 85(4):573-85. PubMed ID: 324869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide excision repair deficiency causes elevated levels of chromosome gain in Saccharomyces cerevisiae.
    Howlett NG; Schiestl RH
    DNA Repair (Amst); 2004 Feb; 3(2):127-34. PubMed ID: 14706346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae.
    Zadorsky SP; Sopova YV; Andreichuk DY; Startsev VA; Medvedeva VP; Inge-Vechtomov SG
    Yeast; 2015 Jun; 32(6):479-97. PubMed ID: 25874850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated incidence of loss of heterozygosity (LOH) in an sgs1 mutant of Saccharomyces cerevisiae: roles of yeast RecQ helicase in suppression of aneuploidy, interchromosomal rearrangement, and the simultaneous incidence of both events during mitotic growth.
    Ajima J; Umezu K; Maki H
    Mutat Res; 2002 Jul; 504(1-2):157-72. PubMed ID: 12106656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae.
    Lichten M; Haber JE
    Genetics; 1989 Oct; 123(2):261-8. PubMed ID: 2684745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple method for isolating disomic strains of Saccharomyces cerevisiae.
    Zebrowski DC; Kaback DB
    Yeast; 2008 May; 25(5):321-6. PubMed ID: 18437703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A strategy for constructing aneuploid yeast strains by transient nondisjunction of a target chromosome.
    Anders KR; Kudrna JR; Keller KE; Kinghorn B; Miller EM; Pauw D; Peck AT; Shellooe CE; Strong IJ
    BMC Genet; 2009 Jul; 10():36. PubMed ID: 19594932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential mitotic stability of yeast disomes derived from triploid meiosis.
    Campbell D; Doctor JS; Feuersanger JH; Doolittle MM
    Genetics; 1981 Jun; 98(2):239-55. PubMed ID: 7035289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Saccharomyces cerevisiae MATa and MAT alpha enhances the HO endonuclease-stimulation of chromosomal rearrangements directed by his3 recombinational substrates.
    Fasullo M; Bennett T; Dave P
    Mutat Res; 1999 Jan; 433(1):33-44. PubMed ID: 10047777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DIS1: a yeast gene required for proper meiotic chromosome disjunction.
    Rockmill B; Fogel S
    Genetics; 1988 Jun; 119(2):261-72. PubMed ID: 3294101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 61-kb ring chromosome shows an ARS-dependent increase in its mitotic stability in the mcm2 mutant of yeast.
    Ray A; Roy N; Maitra M; Sinha P
    Curr Genet; 1994; 26(5-6):403-9. PubMed ID: 7874732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.