BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15258901)

  • 1. In situ non-invasive spectral discrimination between bone cell phenotypes used in tissue engineering.
    Notingher I; Jell G; Lohbauer U; Salih V; Hench LL
    J Cell Biochem; 2004 Aug; 92(6):1180-92. PubMed ID: 15258901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive analysis of cell cycle dynamics in single living cells with Raman micro-spectroscopy.
    Swain RJ; Jell G; Stevens MM
    J Cell Biochem; 2008 Jul; 104(4):1427-38. PubMed ID: 18348254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further characterization of human fetal osteoblastic hFOB 1.19 and hFOB/ER alpha cells: bone formation in vivo and karyotype analysis using multicolor fluorescent in situ hybridization.
    Subramaniam M; Jalal SM; Rickard DJ; Harris SA; Bolander ME; Spelsberg TC
    J Cell Biochem; 2002; 87(1):9-15. PubMed ID: 12210717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative in vitro study of the proliferation and growth of human osteoblast-like cells on various biomaterials.
    Itthichaisri C; Wiedmann-Al-Ahmad M; Huebner U; Al-Ahmad A; Schoen R; Schmelzeisen R; Gellrich NC
    J Biomed Mater Res A; 2007 Sep; 82(4):777-87. PubMed ID: 17326141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior of two osteoblast-like cell lines cultured on machined or rough titanium surfaces.
    Shapira L; Halabi A
    Clin Oral Implants Res; 2009 Jan; 20(1):50-5. PubMed ID: 19126108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of an osteoblast-like cell line as a model for human primary osteoblasts using Raman spectroscopy.
    McManus LL; Bonnier F; Burke GA; Meenan BJ; Boyd AR; Byrne HJ
    Analyst; 2012 Apr; 137(7):1559-69. PubMed ID: 22353857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues.
    Huang Z; Lui H; McLean DI; Korbelik M; Zeng H
    Photochem Photobiol; 2005; 81(5):1219-26. PubMed ID: 15869327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined Fourier transform infrared and Raman spectroscopic approach for identification of multidrug resistance phenotype in cancer cell lines.
    Krishna CM; Kegelaer G; Adt I; Rubin S; Kartha VB; Manfait M; Sockalingum GD
    Biopolymers; 2006 Aug; 82(5):462-70. PubMed ID: 16493658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone regeneration: in vitro evaluation of the behaviour of osteoblast-like MG63 cells placed in contact with polylactic-co-glycolic acid, deproteinized bovine bone and demineralized freeze-dried bone allograft.
    Pappalardo S; Mastrangelo F; Reale Marroccia D; Cappello V; Ciampoli C; Carlino V; Tanteri L; Costanzo M; Sinatra F; Tetè S
    J Biol Regul Homeost Agents; 2008; 22(3):175-83. PubMed ID: 18842171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman microscopy for the chemometric analysis of tumor cells.
    Taleb A; Diamond J; McGarvey JJ; Beattie JR; Toland C; Hamilton PW
    J Phys Chem B; 2006 Oct; 110(39):19625-31. PubMed ID: 17004830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of cell fixation on the discrimination of normal and leukemia cells with laser tweezers Raman spectroscopy.
    Chan JW; Taylor DS; Thompson DL
    Biopolymers; 2009 Feb; 91(2):132-9. PubMed ID: 18825777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces.
    Rausch-fan X; Qu Z; Wieland M; Matejka M; Schedle A
    Dent Mater; 2008 Jan; 24(1):102-10. PubMed ID: 17467048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beads of collagen-nanohydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular behavior in MG63 osteoblast-like cells.
    Tsai SW; Hsu FY; Chen PL
    Acta Biomater; 2008 Sep; 4(5):1332-41. PubMed ID: 18468966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopic discrimination of cell response to chemical and physical inactivation.
    Escoriza MF; VanBriesen JM; Stewart S; Maier J
    Appl Spectrosc; 2007 Aug; 61(8):812-23. PubMed ID: 17716399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy.
    Chan JW; Taylor DS; Lane SM; Zwerdling T; Tuscano J; Huser T
    Anal Chem; 2008 Mar; 80(6):2180-7. PubMed ID: 18260656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different titanium surfaces modulate the bone phenotype of SaOS-2 osteoblast-like cells.
    Postiglione L; Di Domenico G; Ramaglia L; di Lauro AE; Di Meglio F; Montagnani S
    Eur J Histochem; 2004; 48(3):213-22. PubMed ID: 15590412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoplasmic RNA in undifferentiated neural stem cells: a potential label-free Raman spectral marker for assessing the undifferentiated status.
    Ghita A; Pascut FC; Mather M; Sottile V; Notingher I
    Anal Chem; 2012 Apr; 84(7):3155-62. PubMed ID: 22436054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy.
    de Jong BW; Schut TC; Maquelin K; van der Kwast T; Bangma CH; Kok DJ; Puppels GJ
    Anal Chem; 2006 Nov; 78(22):7761-9. PubMed ID: 17105169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman microspectroscopy for non-invasive biochemical analysis of single cells.
    Swain RJ; Stevens MM
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):544-9. PubMed ID: 17511648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attachment of human primary osteoblast cells to modified polyethylene surfaces.
    Poulsson AH; Mitchell SA; Davidson MR; Johnstone AJ; Emmison N; Bradley RH
    Langmuir; 2009 Apr; 25(6):3718-27. PubMed ID: 19275183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.