These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 15259957)

  • 1. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release.
    Guibelin E
    Water Sci Technol; 2004; 49(10):209-16. PubMed ID: 15259957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustainability of thermal oxidation processes: strengths for the new millennium.
    Guibelin E
    Water Sci Technol; 2002; 46(10):259-67. PubMed ID: 12479480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Greenhouse gas production in wastewater treatment: process selection is the major factor.
    Keller J; Hartley K
    Water Sci Technol; 2003; 47(12):43-8. PubMed ID: 12926668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct energy recovery from primary and secondary sludges by supercritical water oxidation.
    Svanström M; Modell M; Tester J
    Water Sci Technol; 2004; 49(10):201-8. PubMed ID: 15259956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process.
    Yang X; Wang X; Wang L
    Bioresour Technol; 2010 Apr; 101(8):2580-4. PubMed ID: 19931452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model analysis of energy consumption and greenhouse gas emissions of sewage sludge treatment systems with different processes and scales.
    Soda S; Iwai Y; Sei K; Shimod Y; Ike M
    Water Sci Technol; 2010; 61(2):365-73. PubMed ID: 20107263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimization of greenhouse gas emission by application of anaerobic digestion process with biogas utilization.
    Yasui H; Komatsu K; Goel R; Matsuhashi R; Ohashi A; Harada H
    Water Sci Technol; 2005; 52(1-2):545-52. PubMed ID: 16180476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An innovative sludge management system based on separation of primary and secondary sludge treatment.
    Mininni G; Braguglia CM; Ramadori R; Tomei MC
    Water Sci Technol; 2004; 50(9):145-53. PubMed ID: 15581006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process (OSA process).
    Chen GH; An KJ; Saby S; Brois E; Djafer M
    Water Res; 2003 Sep; 37(16):3855-66. PubMed ID: 12909103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon balance of anaerobic granulation process: carbon credit.
    Wong BT; Show KY; Lee DJ; Lai JY
    Bioresour Technol; 2009 Mar; 100(5):1734-9. PubMed ID: 18990565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilisation of energy from digester gas and sludge incineration at Hamburg's Köhlbrandhöft WWTP.
    Thierbach RD; Hanssen H
    Water Sci Technol; 2002; 46(4-5):397-403. PubMed ID: 12361039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic digestion: impact of future greenhouse gases mitigation policies on methane generation and usage.
    Greenfield PF; Batstone DJ
    Water Sci Technol; 2005; 52(1-2):39-47. PubMed ID: 16180407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technological options for the management of biosolids.
    Wang H; Brown SL; Magesan GN; Slade AH; Quintern M; Clinton PW; Payn TW
    Environ Sci Pollut Res Int; 2008 Jun; 15(4):308-17. PubMed ID: 18488261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sludge pre-treatment with pulsed electric fields.
    Kopplow O; Barjenbruch M; Heinz V
    Water Sci Technol; 2004; 49(10):123-9. PubMed ID: 15259946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying energy and carbon footprint optimization potentials of a sludge treatment line with Life Cycle Assessment.
    Remy C; Lesjean B; Waschnewski J
    Water Sci Technol; 2013; 67(1):63-73. PubMed ID: 23128622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy and nutrient recovery from sewage sludge via pyrolysis.
    Bridle TR; Pritchard D
    Water Sci Technol; 2004; 50(9):169-75. PubMed ID: 15581009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogas production, sludge accumulation and mass balance of carbon in anaerobic ponds.
    Picot B; Paing J; Sambuco JP; Costa RH; Rambaud A
    Water Sci Technol; 2003; 48(2):243-50. PubMed ID: 14510217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermochemical treatment of sewage sludge ashes for phosphorus recovery.
    Adam C; Peplinski B; Michaelis M; Kley G; Simon FG
    Waste Manag; 2009 Mar; 29(3):1122-8. PubMed ID: 19036571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal hygienization of excess anaerobic sludge: a possible self-sustained application of biogas produced in UASB reactors.
    Borges ES; Godinho VM; Chernicharo CA
    Water Sci Technol; 2005; 52(10-11):227-34. PubMed ID: 16459796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.