These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 15260240)
1. The bacterial scaffoldin: structure, function and potential applications in the nanosciences. Ding SY; Lamed R; Bayer EA; Himmel ME Genet Eng (N Y); 2003; 25():209-25. PubMed ID: 15260240 [TBL] [Abstract][Full Text] [Related]
3. Combined Crystal Structure of a Type I Cohesin: MUTATION AND AFFINITY BINDING STUDIES REVEAL STRUCTURAL DETERMINANTS OF COHESIN-DOCKERIN SPECIFICITIES. Cameron K; Weinstein JY; Zhivin O; Bule P; Fleishman SJ; Alves VD; Gilbert HJ; Ferreira LM; Fontes CM; Bayer EA; Najmudin S J Biol Chem; 2015 Jun; 290(26):16215-25. PubMed ID: 25934389 [TBL] [Abstract][Full Text] [Related]
4. A cohesin domain from Clostridium thermocellum: the crystal structure provides new insights into cellulosome assembly. Shimon LJ; Bayer EA; Morag E; Lamed R; Yaron S; Shoham Y; Frolow F Structure; 1997 Mar; 5(3):381-90. PubMed ID: 9083107 [TBL] [Abstract][Full Text] [Related]
5. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. Xu Q; Gao W; Ding SY; Kenig R; Shoham Y; Bayer EA; Lamed R J Bacteriol; 2003 Aug; 185(15):4548-57. PubMed ID: 12867464 [TBL] [Abstract][Full Text] [Related]
7. Functional asymmetry in cohesin binding belies inherent symmetry of the dockerin module: insight into cellulosome assembly revealed by systematic mutagenesis. Karpol A; Barak Y; Lamed R; Shoham Y; Bayer EA Biochem J; 2008 Mar; 410(2):331-8. PubMed ID: 18021074 [TBL] [Abstract][Full Text] [Related]
8. The crystal structure of a type I cohesin domain at 1.7 A resolution. Tavares GA; Béguin P; Alzari PM J Mol Biol; 1997 Oct; 273(3):701-13. PubMed ID: 9402065 [TBL] [Abstract][Full Text] [Related]
9. Purification, crystallization and preliminary X-ray characterization of the Acetivibrio cellulolyticus type I cohesin ScaC in complex with the ScaB dockerin. Cameron K; Alves VD; Bule P; Ferreira LM; Fontes CM; Najmudin S Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Sep; 68(Pt 9):1030-3. PubMed ID: 22949188 [TBL] [Abstract][Full Text] [Related]
10. Revisiting the NMR solution structure of the Cel48S type-I dockerin module from Clostridium thermocellum reveals a cohesin-primed conformation. Chen C; Cui Z; Xiao Y; Cui Q; Smith SP; Lamed R; Bayer EA; Feng Y J Struct Biol; 2014 Nov; 188(2):188-93. PubMed ID: 25270376 [TBL] [Abstract][Full Text] [Related]
11. Atypical cohesin-dockerin complex responsible for cell surface attachment of cellulosomal components: binding fidelity, promiscuity, and structural buttresses. Salama-Alber O; Jobby MK; Chitayat S; Smith SP; White BA; Shimon LJW; Lamed R; Frolow F; Bayer EA J Biol Chem; 2013 Jun; 288(23):16827-16838. PubMed ID: 23580648 [TBL] [Abstract][Full Text] [Related]
12. Standalone cohesin as a molecular shuttle in cellulosome assembly. Voronov-Goldman M; Yaniv O; Gul O; Yoffe H; Salama-Alber O; Slutzki M; Levy-Assaraf M; Jindou S; Shimon LJ; Borovok I; Bayer EA; Lamed R; Frolow F FEBS Lett; 2015 Jun; 589(14):1569-76. PubMed ID: 25896019 [TBL] [Abstract][Full Text] [Related]
13. Insights into higher-order organization of the cellulosome revealed by a dissect-and-build approach: crystal structure of interacting Clostridium thermocellum multimodular components. Adams JJ; Currie MA; Ali S; Bayer EA; Jia Z; Smith SP J Mol Biol; 2010 Mar; 396(4):833-9. PubMed ID: 20070943 [TBL] [Abstract][Full Text] [Related]
14. Involvement of both dockerin subdomains in assembly of the Clostridium thermocellum cellulosome. Lytle B; Wu JH J Bacteriol; 1998 Dec; 180(24):6581-5. PubMed ID: 9852002 [TBL] [Abstract][Full Text] [Related]
15. Unique organization and unprecedented diversity of the Zhivin O; Dassa B; Moraïs S; Utturkar SM; Brown SD; Henrissat B; Lamed R; Bayer EA Biotechnol Biofuels; 2017; 10():211. PubMed ID: 28912832 [TBL] [Abstract][Full Text] [Related]
16. Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Pagès S; Bélaïch A; Bélaïch JP; Morag E; Lamed R; Shoham Y; Bayer EA Proteins; 1997 Dec; 29(4):517-27. PubMed ID: 9408948 [TBL] [Abstract][Full Text] [Related]
17. Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: calcium-induced effects on conformation and target recognition. Adams JJ; Webb BA; Spencer HL; Smith SP Biochemistry; 2005 Feb; 44(6):2173-82. PubMed ID: 15697243 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of a cohesin module from Clostridium cellulolyticum: implications for dockerin recognition. Spinelli S; Fiérobe HP; Belaïch A; Belaïch JP; Henrissat B; Cambillau C J Mol Biol; 2000 Nov; 304(2):189-200. PubMed ID: 11080455 [TBL] [Abstract][Full Text] [Related]
19. Scaffoldin conformation and dynamics revealed by a ternary complex from the Clostridium thermocellum cellulosome. Currie MA; Adams JJ; Faucher F; Bayer EA; Jia Z; Smith SP J Biol Chem; 2012 Aug; 287(32):26953-61. PubMed ID: 22707718 [TBL] [Abstract][Full Text] [Related]
20. Overexpression, crystallization and preliminary X-ray characterization of Ruminococcus flavefaciens scaffoldin C cohesin in complex with a dockerin from an uncharacterized CBM-containing protein. Bule P; Ruimy-Israeli V; Cardoso V; Bayer EA; Fontes CM; Najmudin S Acta Crystallogr F Struct Biol Commun; 2014 Aug; 70(Pt 8):1061-4. PubMed ID: 25084382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]