These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 15260261)

  • 21. Reconstructing ocular surfaces by Purkinje images: an exact ray approach.
    Turuwhenua J
    Ophthalmic Physiol Opt; 2009 Jan; 29(1):80-91. PubMed ID: 19154284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A refined bootstrap method for estimating the Zernike polynomial model order for corneal surfaces.
    Iskander DR; Morelande MR; Collins MJ; Buehren T
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2203-6. PubMed ID: 15605870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Calculating the localization and dimension of the real pupil in keratoconus with ray tracing of corneal topography data].
    Langenbucher A; Neumann J; Kus MM; Seitz B
    Klin Monbl Augenheilkd; 1999 Sep; 215(3):163-8. PubMed ID: 10528281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Corneal topography reconstruction algorithm that avoids the skew ray ambiguity and the skew ray error.
    Klein SA
    Optom Vis Sci; 1997 Nov; 74(11):945-62. PubMed ID: 9403891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Damped least-squares approach for point-source corneal topography.
    Sokurenko V; Molebny V
    Ophthalmic Physiol Opt; 2009 May; 29(3):330-7. PubMed ID: 19422565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors.
    Liu T; Thibos L; Marin G; Hernandez M
    Ophthalmic Physiol Opt; 2014 Jan; 34(1):63-72. PubMed ID: 24325435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface shape evaluation with a corneal topographer based on a conical null-screen with a novel radial point distribution.
    Campos-GarcĂ­a M; Cossio-Guerrero C; Moreno-Oliva VI; Huerta-Carranza O
    Appl Opt; 2015 Jun; 54(17):5411-9. PubMed ID: 26192841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient discrete cosine transform model-based algorithm for photoacoustic image reconstruction.
    Zhang Y; Wang Y; Zhang C
    J Biomed Opt; 2013 Jun; 18(6):066008. PubMed ID: 23733024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel zernike application to differentiate between three-dimensional corneal thickness of normal corneas and corneas with keratoconus.
    Shetty R; Matalia H; Srivatsa P; Ghosh A; Dupps WJ; Sinha Roy A
    Am J Ophthalmol; 2015 Sep; 160(3):453-462.e2. PubMed ID: 26067190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstructing ocular surfaces by Purkinje images using an exact ray approach: estimating IOL decenter and tilt.
    Turuwhenua J
    Ophthalmic Physiol Opt; 2010 Jan; 30(1):43-54. PubMed ID: 20444109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Forward ray tracing for image projection prediction and surface reconstruction in the evaluation of corneal topography systems.
    Snellenburg JJ; Braaf B; Hermans EA; van der Heijde RG; Sicam VA
    Opt Express; 2010 Aug; 18(18):19324-38. PubMed ID: 20940828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unwrapping MR phase maps with Chebyshev moments.
    Langley JA; Zhao Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4043-6. PubMed ID: 19163600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [An algorithm of corneal reconstruction based on precise location of corneal center].
    Zhou H; Shen J; Gao S; Tang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Oct; 28(5):872-5, 885. PubMed ID: 22097246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preliminary results of neural networks and zernike polynomials for classification of videokeratography maps.
    Carvalho LA
    Optom Vis Sci; 2005 Feb; 82(2):151-8. PubMed ID: 15711463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specular surface reconstruction for multi-camera corneal topographer arrangements.
    Fazekas Z; Soumelidis A; Bodis-Szomoru A; Schipp F
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2254-7. PubMed ID: 19163148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance in specular reflection and slit-imaging corneal topography.
    Braaf B; Dubbelman M; van der Heijde RG; Sicam VA
    Optom Vis Sci; 2009 May; 86(5):467-75. PubMed ID: 19342978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Corneal topography matching by iterative registration.
    Wang J; Elsheikh A; Davey PG; Wang W; Bao F; Mottershead JE
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1154-67. PubMed ID: 25500860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Topographer reconstruction of the nonrotation-symmetric anterior corneal surface features.
    Sicam VA; VAN der Heijde RG
    Optom Vis Sci; 2006 Dec; 83(12):910-8. PubMed ID: 17164684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new reconstruction algorithm for improvement of corneal topographical analysis.
    Wang JY; Rice DA; Klyce SD
    Refract Corneal Surg; 1989; 5(6):379-87. PubMed ID: 2488835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Interpretation of corneal topography after penetrating keratoplasty with wave-front parameters--comparison between non-mechanical trepanation with excimer laser and motor trepanation].
    Langenbucher A; Seitz B; Kus MM
    Klin Monbl Augenheilkd; 1998 Jun; 212(6):433-43. PubMed ID: 9715463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.