These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 15260319)
21. Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms. de Snoo GR; de Wit PJ Ecotoxicol Environ Saf; 1998 Sep; 41(1):112-8. PubMed ID: 9756699 [TBL] [Abstract][Full Text] [Related]
22. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France). Vernier F; Leccia-Phelpin O; Lescot JM; Minette S; Miralles A; Barberis D; Scordia C; Kuentz-Simonet V; Tonneau JP Environ Sci Pollut Res Int; 2017 Mar; 24(8):6923-6950. PubMed ID: 27726081 [TBL] [Abstract][Full Text] [Related]
23. Development of a GIS-based indicator for environmental pesticide exposure and its application to a Belgian case-control study on bladder cancer. Cornelis C; Schoeters G; Kellen E; Buntinx F; Zeegers M Int J Hyg Environ Health; 2009 Mar; 212(2):172-85. PubMed ID: 18768353 [TBL] [Abstract][Full Text] [Related]
24. Spatially distributed pesticide exposure assessment in the Central Valley, California, USA. Luo Y; Zhang M Environ Pollut; 2010 May; 158(5):1629-37. PubMed ID: 20036451 [TBL] [Abstract][Full Text] [Related]
25. Pesticide distribution in an agricultural environment in Argentina. Loewy RM; Monza LB; Kirs VE; Savini MC J Environ Sci Health B; 2011; 46(8):662-70. PubMed ID: 21806463 [TBL] [Abstract][Full Text] [Related]
26. Predicting pesticide environmental risk in intensive agricultural areas. I: Screening level risk assessment of individual chemicals in surface waters. Verro R; Finizio A; Otto S; Vighi M Environ Sci Technol; 2009 Jan; 43(2):522-9. PubMed ID: 19238989 [TBL] [Abstract][Full Text] [Related]
27. A pesticide runoff model for simulating runoff losses of pesticides from agricultural lands. Li YR; Huang GH; Li YF; Struger J; Fischer JD Water Sci Technol; 2003; 47(1):33-40. PubMed ID: 12578171 [TBL] [Abstract][Full Text] [Related]
28. Measures to reduce pesticide spray drift in a small aquatic ecosystem in vineyard estate. Vischetti C; Cardinali A; Monaci E; Nicelli M; Ferrari F; Trevisan M; Capri E Sci Total Environ; 2008 Jan; 389(2-3):497-502. PubMed ID: 17936878 [TBL] [Abstract][Full Text] [Related]
29. Validation of the AGDISP model for predicting airborne atrazine spray drift: A South African ground application case study. Nsibande SA; Dabrowski JM; van der Walt E; Venter A; Forbes PB Chemosphere; 2015 Nov; 138():454-61. PubMed ID: 26171732 [TBL] [Abstract][Full Text] [Related]
30. Geodata-based probabilistic risk assessment and management of pesticides in Germany: a conceptual framework. Schulz R; Stehle S; Elsaesser D; Matezki S; Müller A; Neumann M; Ohliger R; Wogram J; Zenker K Integr Environ Assess Manag; 2009 Jan; 5(1):69-79. PubMed ID: 19431292 [TBL] [Abstract][Full Text] [Related]
31. Response of macroinvertebrate communities to temporal dynamics of pesticide mixtures: A case study from the Sacramento River watershed, California. Chiu MC; Hunt L; Resh VH Environ Pollut; 2016 Dec; 219():89-98. PubMed ID: 27744143 [TBL] [Abstract][Full Text] [Related]
32. Environmental monitoring and risk assessment of organophosphate pesticides in aquatic ecosystems of north-west Bangladesh. Sumon KA; Rashid H; Peeters ETHM; Bosma RH; Van den Brink PJ Chemosphere; 2018 Sep; 206():92-100. PubMed ID: 29734095 [TBL] [Abstract][Full Text] [Related]
33. Changes in pesticide occurrence in suburban surface waters in Massachusetts, USA, 1999-2010. Wijnja H; Doherty JJ; Safie SA Bull Environ Contam Toxicol; 2014 Aug; 93(2):228-32. PubMed ID: 24619363 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of probabilistic risk assessment of pesticides in the UK: chlorpyrifos use on top fruit. Crane M; Whitehouse P; Comber S; Watts C; Giddings J; Moore DR; Grist E Pest Manag Sci; 2003 May; 59(5):512-26. PubMed ID: 12741519 [TBL] [Abstract][Full Text] [Related]
35. The agricultural dispersal-valley drift spray drift modeling system compared with pesticide drift data. Allwine KJ; Thistle HW; Teske ME; Anhold J Environ Toxicol Chem; 2002 May; 21(5):1085-90. PubMed ID: 12013131 [TBL] [Abstract][Full Text] [Related]
36. Water body and riparian buffer strip characteristics in a vineyard area to support aquatic pesticide exposure assessment. Ohliger R; Schulz R Sci Total Environ; 2010 Oct; 408(22):5405-13. PubMed ID: 20817261 [TBL] [Abstract][Full Text] [Related]
37. A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. Papadakis EN; Vryzas Z; Kotopoulou A; Kintzikoglou K; Makris KC; Papadopoulou-Mourkidou E Ecotoxicol Environ Saf; 2015 Jun; 116():1-9. PubMed ID: 25733189 [TBL] [Abstract][Full Text] [Related]
38. Ecological risk estimation of organophosphorus pesticides in riverine ecosystems. Wee SY; Aris AZ Chemosphere; 2017 Dec; 188():575-581. PubMed ID: 28917209 [TBL] [Abstract][Full Text] [Related]
39. Comparative ecological risks of pesticides used in plantation production of papaya: application of the SYNOPS indicator. Hernández-Hernández CN; Valle-Mora J; Santiesteban-Hernández A; Bello-Mendoza R Sci Total Environ; 2007 Aug; 381(1-3):112-25. PubMed ID: 17482661 [TBL] [Abstract][Full Text] [Related]
40. A comparison of predicted and measured levels of runoff-related pesticide concentrations in small lowland streams on a landscape level. Berenzen N; Lentzen-Godding A; Probst M; Schulz H; Schulz R; Liess M Chemosphere; 2005 Feb; 58(5):683-91. PubMed ID: 15620762 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]