BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15260476)

  • 1. Backbone dynamics of the RNase H domain of HIV-1 reverse transcriptase.
    Mueller GA; Pari K; DeRose EF; Kirby TW; London RE
    Biochemistry; 2004 Jul; 43(29):9332-42. PubMed ID: 15260476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of the RNase H domain of the HIV-1 reverse transcriptase in the presence of magnesium.
    Pari K; Mueller GA; DeRose EF; Kirby TW; London RE
    Biochemistry; 2003 Jan; 42(3):639-50. PubMed ID: 12534276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity of the isolated HIV RNase H domain and specific inhibition by N-hydroxyimides.
    Hang JQ; Rajendran S; Yang Y; Li Y; In PW; Overton H; Parkes KE; Cammack N; Martin JA; Klumpp K
    Biochem Biophys Res Commun; 2004 Apr; 317(2):321-9. PubMed ID: 15063760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of the C-terminal helix to the stability and enzymatic activity of Escherichia coli ribonuclease H.
    Goedken ER; Raschke TM; Marqusee S
    Biochemistry; 1997 Jun; 36(23):7256-63. PubMed ID: 9188727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding the ribonuclease H domain of Moloney murine leukemia virus reverse transcriptase requires metal binding or a short N-terminal extension.
    Goedken ER; Marqusee S
    Proteins; 1998 Oct; 33(1):135-43. PubMed ID: 9741851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysine directed cross-linking of viral DNA-RNA:DNA hybrid substrate to the isolated RNase H domain of HIV-1 reverse transcriptase.
    Guaitiao JP; Zúñiga RA; Roth MJ; Leon O
    Biochemistry; 2004 Feb; 43(5):1302-8. PubMed ID: 14756566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of type 1 ribonuclease H from hyperthermophilic archaeon Sulfolobus tokodaii: role of arginine 118 and C-terminal anchoring.
    You DJ; Chon H; Koga Y; Takano K; Kanaya S
    Biochemistry; 2007 Oct; 46(41):11494-503. PubMed ID: 17892305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of the C-terminus of HIV-1 reverse transcriptase p66 and p51 subunits as a single polypeptide with RNase H activity.
    Zúñiga R; Sengupta S; Snyder C; Leon O; Roth MJ
    Protein Eng Des Sel; 2004 Jul; 17(7):581-7. PubMed ID: 15333774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting HIV-1 integrase with aptamers selected against the purified RNase H domain of HIV-1 RT.
    Métifiot M; Leon O; Tarrago-Litvak L; Litvak S; Andréola ML
    Biochimie; 2005; 87(9-10):911-9. PubMed ID: 16164998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation of E. coli ribonuclease H1 in solution: correlation with NMR and X-ray data and insights into biological function.
    Philippopoulos M; Lim C
    J Mol Biol; 1995 Dec; 254(4):771-92. PubMed ID: 7500349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors.
    Sauvé S; Tremblay L; Lavigne P
    J Mol Biol; 2004 Sep; 342(3):813-32. PubMed ID: 15342239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SCO2299 gene from Streptomyces coelicolor A3(2) encodes a bifunctional enzyme consisting of an RNase H domain and an acid phosphatase domain.
    Ohtani N; Saito N; Tomita M; Itaya M; Itoh A
    FEBS J; 2005 Jun; 272(11):2828-37. PubMed ID: 15943815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of RNase HII from psychrotrophic bacterium, Shewanella sp. SIB1 as a high-activity type RNase H.
    Chon H; Tadokoro T; Ohtani N; Koga Y; Takano K; Kanaya S
    FEBS J; 2006 May; 273(10):2264-75. PubMed ID: 16650002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-dependent inhibition or stimulation of HIV RNase H activity by non-nucleoside reverse transcriptase inhibitors (NNRTIs).
    Hang JQ; Li Y; Yang Y; Cammack N; Mirzadegan T; Klumpp K
    Biochem Biophys Res Commun; 2007 Jan; 352(2):341-50. PubMed ID: 17113568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The solution structure and dynamics of human pancreatic ribonuclease determined by NMR spectroscopy provide insight into its remarkable biological activities and inhibition.
    Kövér KE; Bruix M; Santoro J; Batta G; Laurents DV; Rico M
    J Mol Biol; 2008 Jun; 379(5):953-65. PubMed ID: 18495155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of the activities of reverse transcriptase and integrase of human immunodeficiency virus type-1 by peptides derived from the homologous viral protein R (Vpr).
    Gleenberg IO; Herschhorn A; Hizi A
    J Mol Biol; 2007 Jun; 369(5):1230-43. PubMed ID: 17490682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the internal motions of Escherichia coli ribonuclease HI by a combination of 15N-NMR relaxation analysis and molecular dynamics simulation: examination of dynamic models.
    Yamasaki K; Saito M; Oobatake M; Kanaya S
    Biochemistry; 1995 May; 34(20):6587-601. PubMed ID: 7756290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus.
    Chon H; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2006 Feb; 356(1):165-78. PubMed ID: 16343535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial selection and delivery of thioaptamers.
    Thiviyanathan V; Somasunderam AD; Gorenstein DG
    Biochem Soc Trans; 2007 Feb; 35(Pt 1):50-2. PubMed ID: 17233599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.