These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15260552)

  • 1. A theory of electrical conductivity of molten salt. II.
    Koishi T; Tamaki S
    J Chem Phys; 2004 Jul; 121(1):333-40. PubMed ID: 15260552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theory of transport properties in molten salts.
    Koishi T; Tamaki S
    J Chem Phys; 2005 Nov; 123(19):194501. PubMed ID: 16321094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pressure on the transport properties of ionic liquids: 1-alkyl-3-methylimidazolium salts.
    Harris KR; Kanakubo M; Tsuchihashi N; Ibuki K; Ueno M
    J Phys Chem B; 2008 Aug; 112(32):9830-40. PubMed ID: 18637684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.
    Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN
    Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity of molten alkali halides: Temperature and density dependence.
    Ohtori N; Oono T; Takase K
    J Chem Phys; 2009 Jan; 130(4):044505. PubMed ID: 19191396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of imidazolium-based ionic liquids. II. Transport coefficients.
    Kowsari MH; Alavi S; Ashrafizaadeh M; Najafi B
    J Chem Phys; 2009 Jan; 130(1):014703. PubMed ID: 19140627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-dependent dc conductivity and relaxation time in the Debye-Stokes-Einstein equation.
    Power G; Vij JK; Johari GP
    J Phys Chem B; 2007 Sep; 111(38):11201-8. PubMed ID: 17764166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pressure on transport properties of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate.
    Kanakubo M; Harris KR; Tsuchihashi N; Ibuki K; Ueno M
    J Phys Chem B; 2007 Mar; 111(8):2062-9. PubMed ID: 17274650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and dynamical properties of ionic liquids: the influence of ion size disparity.
    Spohr HV; Patey GN
    J Chem Phys; 2008 Aug; 129(6):064517. PubMed ID: 18715095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Derivation of quantum langevin equation from an explicit molecule-medium treatment in interaction picture.
    Datta SN
    J Phys Chem A; 2005 Dec; 109(50):11417-23. PubMed ID: 16354030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular dynamics simulation of the electrical conductivity behaviors of highly concentrated liquid ammoniates NaIalphaNH(3): comparison with experimental measurements.
    Picaud S; Hoang PN; Herlem G
    J Chem Phys; 2005 May; 122(17):171102. PubMed ID: 15910016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation.
    Ahmed M; Liu Z; Humphries S; Goldberg SN
    Int J Hyperthermia; 2008 Nov; 24(7):577-88. PubMed ID: 18608580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified approach to ion transport and structural relaxation in amorphous polymers and glasses.
    Ingram MD; Imrie CT; Ledru J; Hutchinson JM
    J Phys Chem B; 2008 Jan; 112(3):859-66. PubMed ID: 18166033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grand canonical Monte Carlo investigations of electrical double layer in molten salts.
    Lamperski S; Kłos J
    J Chem Phys; 2008 Oct; 129(16):164503. PubMed ID: 19045280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A diagrammatic formulation of the kinetic theory of fluctuations in equilibrium classical fluids. VI. Binary collision approximations for the memory function for self-correlation functions.
    Noah-Vanhoucke JE; Andersen HC
    J Chem Phys; 2007 Aug; 127(6):064502. PubMed ID: 17705607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the nonlinear variation of dc conductivity with dielectric relaxation time.
    Johari GP; Andersson O
    J Chem Phys; 2006 Sep; 125(12):124501. PubMed ID: 17014185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling real dynamics in the coarse-grained representation of condensed phase systems.
    Izvekov S; Voth GA
    J Chem Phys; 2006 Oct; 125(15):151101. PubMed ID: 17059230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions.
    Hu YF; Zhang XM; Li JG; Liang QQ
    J Phys Chem B; 2008 Dec; 112(48):15376-81. PubMed ID: 18989914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic theory of radio frequency quadrupole ion traps. I. Trapping of atomic ions in a pure atomic gas.
    Viehland LA; Goeringer DE
    J Chem Phys; 2004 May; 120(19):9090-103. PubMed ID: 15267845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.