BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 15260626)

  • 1. Viscosities of liquid CdTe near melting point from ab initio molecular-dynamics calculations.
    Ko E; Alemany MM; Chelikowsky JR
    J Chem Phys; 2004 Jul; 121(2):942-5. PubMed ID: 15260626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio melting curve of molybdenum by the phase coexistence method.
    Cazorla C; Gillan MJ; Taioli S; Alfè D
    J Chem Phys; 2007 May; 126(19):194502. PubMed ID: 17523817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molecular dynamics examination of the relationship between self-diffusion and viscosity in liquid metals.
    Lü Y; Cheng H; Chen M
    J Chem Phys; 2012 Jun; 136(21):214505. PubMed ID: 22697556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulations of the solid, liquid, and melting of 1-n-butyl-4-amino-1,2,4-triazolium bromide.
    Alavi S; Thompson DL
    J Phys Chem B; 2005 Sep; 109(38):18127-34. PubMed ID: 16853328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport properties of liquid nickel near the melting point: An ab initio molecular dynamics study.
    Jakse N; Wax JF; Pasturel A
    J Chem Phys; 2007 Jun; 126(23):234508. PubMed ID: 17600426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico predictions of the temperature-dependent viscosities and electrical conductivities of functionalized and nonfunctionalized ionic liquids.
    Eiden P; Bulut S; Köchner T; Friedrich C; Schubert T; Krossing I
    J Phys Chem B; 2011 Jan; 115(2):300-9. PubMed ID: 21138303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-rate dependent shear viscosity of the Gaussian core model fluid.
    Ahmed A; Mausbach P; Sadus RJ
    J Chem Phys; 2009 Dec; 131(22):224511. PubMed ID: 20001061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and dynamical properties of ionic liquids: the influence of ion size disparity.
    Spohr HV; Patey GN
    J Chem Phys; 2008 Aug; 129(6):064517. PubMed ID: 18715095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the sorption dynamics of NaH using a reactive force field.
    Ojwang JG; van Santen R; Kramer GJ; van Duin AC; Goddard WA
    J Chem Phys; 2008 Apr; 128(16):164714. PubMed ID: 18447486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of liquid sulfur dioxide.
    Ribeiro MC
    J Phys Chem B; 2006 May; 110(17):8789-97. PubMed ID: 16640437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab Initio simulations of nonstoichiometric Cd(x)Te(1-x) liquids.
    Ko E; Alemany MM; Derby JJ; Chelikowsky JR
    J Chem Phys; 2005 Aug; 123(8):084508. PubMed ID: 16164313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling a liquid crystal dynamics by atomistic simulation with an ab initio derived force field.
    De Gaetani L; Prampolini G; Tani A
    J Phys Chem B; 2006 Feb; 110(6):2847-54. PubMed ID: 16471894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic properties of liquid and undercooled aluminum.
    Jakse N; Pasturel A
    J Phys Condens Matter; 2013 Jul; 25(28):285103. PubMed ID: 23752056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio calculations of the melting temperatures of refractory bcc metals.
    Wang LG; van de Walle A
    Phys Chem Chem Phys; 2012 Jan; 14(4):1529-34. PubMed ID: 22159029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculating geochemical reaction pathways--exploration of the inner-sphere water exchange mechanism in Al(H2O)6(3+)(aq) + nH2O with ab Initio calculations and molecular dynamics.
    Evans RJ; Rustad JR; Casey WH
    J Phys Chem A; 2008 May; 112(17):4125-40. PubMed ID: 18366199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the behavior of single-particle dynamic properties of liquid Hg and other metals.
    González LE; González DJ; Calderín L; Sengül S
    J Chem Phys; 2008 Nov; 129(17):171103. PubMed ID: 19045325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of temperature and density functional models in ab initio molecular dynamics simulation of liquid water.
    VandeVondele J; Mohamed F; Krack M; Hutter J; Sprik M; Parrinello M
    J Chem Phys; 2005 Jan; 122(1):14515. PubMed ID: 15638682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface protonation at the rutile (110) interface: explicit incorporation of solvation structure within the refined MUSIC model framework.
    Machesky ML; Predota M; Wesolowski DJ; Vlcek L; Cummings PT; Rosenqvist J; Ridley MK; Kubicki JD; Bandura AV; Kumar N; Sofo JO
    Langmuir; 2008 Nov; 24(21):12331-9. PubMed ID: 18842061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio melting curve of copper by the phase coexistence approach.
    Vocadlo L; Alfè D; Price GD; Gillan MJ
    J Chem Phys; 2004 Feb; 120(6):2872-8. PubMed ID: 15268434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio molecular dynamics study of the static, dynamic, and electronic properties of liquid mercury at room temperature.
    Calderín L; González LE; González DJ
    J Chem Phys; 2009 May; 130(19):194505. PubMed ID: 19466841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.