These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 15260631)

  • 1. A Ti-V-based bcc phase alloy for use as metal hydride electrode with high discharge capacity.
    Yu XB; Wu Z; Xia BJ; Xu NX
    J Chem Phys; 2004 Jul; 121(2):987-90. PubMed ID: 15260631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical hydrogen storage in Ti(1.6)V(0.4)Ni(1-x)Co(x) icosahedral quasicrystalline alloys.
    Hu W; Niu XD; Watada M; Kawabe Y; Wu YM; Wang LD; Wang LM
    Chemphyschem; 2010 Jan; 11(1):295-300. PubMed ID: 19911407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mg1.8La0.2Ni-xNi nanocomposites for electrochemical hydrogen storage.
    Yang H; Zhang H; Mo W; Zhou Z
    J Phys Chem B; 2006 Dec; 110(51):25769-74. PubMed ID: 17181219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.
    Li H; Wang Y; Na H; Liu H; Zhou H
    J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoassisted charge behavior of hydrogen storage alloy-TiO2/Pt electrodes.
    Wang GT; Tu JP; Zhang WK; Wang XL; Huang H; Gan XP
    J Phys Chem B; 2005 Jul; 109(27):13210-3. PubMed ID: 16852647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ce(5)Mg(41)-xNi nanocomposites for electrochemical hydrogen storage.
    Wang Y; Wang X
    Dalton Trans; 2008 Oct; (40):5495-500. PubMed ID: 19082033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical hydrogen storage in Li-doped pentacene.
    Fang B; Zhou H; Honma I
    J Chem Phys; 2006 May; 124(20):204718. PubMed ID: 16774375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallographic and electrochemical characteristics of La(0.7)Mg(0.3)Ni(5.0-x)(Al(0.5)Mo(0.5)x hydrogen-storage alloys.
    Zhang XB; Sun DZ; Yin WY; Chai YJ; Zhao MS
    Chemphyschem; 2005 Mar; 6(3):520-5. PubMed ID: 15799478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries.
    Ko YD; Kang JG; Park JG; Lee S; Kim DW
    Nanotechnology; 2009 Nov; 20(45):455701. PubMed ID: 19822930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full structural and electrochemical characterization of Li2Ti6O13 as anode for Li-ion batteries.
    Pérez-Flores JC; Baehtz C; Hoelzel M; Kuhn A; García-Alvarado F
    Phys Chem Chem Phys; 2012 Feb; 14(8):2892-9. PubMed ID: 22258437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A High-Energy Aqueous Manganese-Metal Hydride Hybrid Battery.
    Yang M; Chen R; Shen Y; Zhao X; Shen X
    Adv Mater; 2020 Sep; 32(38):e2001106. PubMed ID: 32803841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications.
    Young KH; Nei J
    Materials (Basel); 2013 Oct; 6(10):4574-4608. PubMed ID: 28788349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal hydrides for lithium-ion batteries.
    Oumellal Y; Rougier A; Nazri GA; Tarascon JM; Aymard L
    Nat Mater; 2008 Nov; 7(11):916-21. PubMed ID: 18849978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ternary MgTiX-alloys: a promising route towards low-temperature, high-capacity, hydrogen-storage materials.
    Vermeulen P; van Thiel EF; Notten PH
    Chemistry; 2007; 13(35):9892-8. PubMed ID: 17879246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rechargeable Fe(III/VI) super-iron cathodes.
    Licht S; Tel-Vered R
    Chem Commun (Camb); 2004 Mar; (6):628-9. PubMed ID: 15010752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of oxygen reduction activity at Pt-Fe, Pt-Co, and Pt-Ni alloy electrodes.
    Wakabayashi N; Takeichi M; Uchida H; Watanabe M
    J Phys Chem B; 2005 Mar; 109(12):5836-41. PubMed ID: 16851636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomolecule-assisted synthesis and electrochemical hydrogen storage of porous spongelike Ni3S2 nanostructures grown directly on nickel foils.
    Zhang B; Ye X; Dai W; Hou W; Xie Y
    Chemistry; 2006 Mar; 12(8):2337-42. PubMed ID: 16389618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High capacity of an Fe-air rechargeable battery using LaGaO3-based oxide ion conductor as an electrolyte.
    Inoishi A; Ida S; Uratani S; Okano T; Ishihara T
    Phys Chem Chem Phys; 2012 Oct; 14(37):12818-22. PubMed ID: 22880205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced enthalpy of metal hydride formation for Mg-Ti nanocomposites produced by spark discharge generation.
    Anastasopol A; Pfeiffer TV; Middelkoop J; Lafont U; Canales-Perez RJ; Schmidt-Ott A; Mulder FM; Eijt SW
    J Am Chem Soc; 2013 May; 135(21):7891-900. PubMed ID: 23651258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.