These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 15260636)

  • 61. Conversion of large-amplitude vibration to electron excitation at a metal surface.
    White JD; Chen J; Matsiev D; Auerbach DJ; Wodtke AM
    Nature; 2005 Feb; 433(7025):503-5. PubMed ID: 15690036
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Quantum wave packet study of the H+ + D2 reaction on diabatic potential energy surfaces.
    Lu RF; Chu TS; Han KL
    J Phys Chem A; 2005 Aug; 109(30):6683-8. PubMed ID: 16834020
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nonadiabatic proton-coupled electron transfer reactions: impact of donor-acceptor vibrations, reorganization energies, and couplings on dynamics and rates.
    Hatcher E; Soudackov A; Hammes-Schiffer S
    J Phys Chem B; 2005 Oct; 109(39):18565-74. PubMed ID: 16853391
    [TBL] [Abstract][Full Text] [Related]  

  • 64. pH-dependent electron transfer from re-bipyridyl complexes to metal oxide nanocrystalline thin films.
    She C; Anderson NA; Guo J; Liu F; Goh WH; Chen DT; Mohler DL; Tian ZQ; Hupp JT; Lian T
    J Phys Chem B; 2005 Oct; 109(41):19345-55. PubMed ID: 16853498
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hybrid organic-inorganic nanomaterials based on polythiophene dendronized nanoparticles.
    Advincula RC
    Dalton Trans; 2006 Jun; (23):2778-84. PubMed ID: 16751885
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Reactive and nonreactive scattering of N2 from Ru(0001): a six-dimensional adiabatic study.
    Díaz C; Vincent JK; Krishnamohan GP; Olsen RA; Kroes GJ; Honkala K; Norskov JK
    J Chem Phys; 2006 Sep; 125(11):114706. PubMed ID: 16999500
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Calculation of vibronic couplings for phenoxyl/phenol and benzyl/toluene self-exchange reactions: implications for proton-coupled electron transfer mechanisms.
    Skone JH; Soudackov AV; Hammes-Schiffer S
    J Am Chem Soc; 2006 Dec; 128(51):16655-63. PubMed ID: 17177415
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nonadiabatic, short-range, intramolecular electron transfer from ruthenium(II) to cobalt(III) complexes.
    Creutz C
    J Phys Chem B; 2007 Jun; 111(24):6713-7. PubMed ID: 17388525
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Coverage dependent non-adiabaticity of CO on a copper surface.
    Omiya T; Arnolds H
    J Chem Phys; 2014 Dec; 141(21):214705. PubMed ID: 25481159
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.
    Somorjai GA; Bratlie KM; Montano MO; Park JY
    J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Direct observation of an intermediate state for a surface photochemical reaction initiated by hot electron transfer.
    Lee J; Ryu S; Chang J; Kim S; Kim SK
    J Phys Chem B; 2005 Aug; 109(30):14481-5. PubMed ID: 16852825
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An orbital-overlap model for minimal work functions of cesiated metal surfaces.
    Chou SH; Voss J; Bargatin I; Vojvodic A; Howe RT; Abild-Pedersen F
    J Phys Condens Matter; 2012 Nov; 24(44):445007. PubMed ID: 23018485
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A first-principles study of molecular oxygen dissociation at an electrode surface: a comparison of potential variation and coadsorption effects.
    Wasileski SA; Janik MJ
    Phys Chem Chem Phys; 2008 Jul; 10(25):3613-27. PubMed ID: 18563222
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A unified perspective on the hydrogen atom transfer and proton-coupled electron transfer mechanisms in terms of topographic features of the ground and excited potential energy surfaces as exemplified by the reaction between phenol and radicals.
    Tishchenko O; Truhlar DG; Ceulemans A; Nguyen MT
    J Am Chem Soc; 2008 Jun; 130(22):7000-10. PubMed ID: 18465862
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Reaction coordinates for electron transfer reactions.
    Rasaiah JC; Zhu J
    J Chem Phys; 2008 Dec; 129(21):214503. PubMed ID: 19063565
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Conduction band mediated electron transfer across nanocrystalline TiO2 surfaces.
    Staniszewski A; Morris AJ; Ito T; Meyer GJ
    J Phys Chem B; 2007 Jun; 111(24):6822-8. PubMed ID: 17444677
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Medium and interfacial effects in the multistep reduction of binuclear complexes with robson-type ligand.
    Nazmutdinov RR; Roznyatovskaya NV; Glukhov DV; Manyurov I; Mazin VM; Tsirlina GA; Probst M
    Inorg Chem; 2008 Aug; 47(15):6659-73. PubMed ID: 18582034
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An exchange-Coulomb model potential energy surface for the Ne-CO interaction. I. Calculation of Ne-CO van der Waals spectra.
    Dham AK; McCourt FR; Meath WJ
    J Chem Phys; 2009 Jun; 130(24):244310. PubMed ID: 19566156
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Role of vibrationally excited NO in promoting electron emission when colliding with a metal surface: a nonadiabatic dynamic model.
    Katz G; Zeiri Y; Kosloff R
    J Phys Chem B; 2005 Oct; 109(40):18876-80. PubMed ID: 16853429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.