BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 15260691)

  • 1. Structure of liquid and glassy methanol confined in cylindrical pores.
    Morineau D; Guegan R; Xia Y; Alba-Simionesco C
    J Chem Phys; 2004 Jul; 121(3):1466-73. PubMed ID: 15260691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confinement of molecular liquids: consequences on thermodynamic, static and dynamical properties of benzene and toluene.
    Alba-Simionesco C; Dosseh G; Dumont E; Frick B; Geil B; Morineau D; Teboul V; Xia Y
    Eur Phys J E Soft Matter; 2003 Sep; 12(1):19-28. PubMed ID: 15007675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase diagram and glass transition of confined benzene.
    Xia Y; Dosseh G; Morineau D; Alba-Simionesco C
    J Phys Chem B; 2006 Oct; 110(39):19735-44. PubMed ID: 17004844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of methanol confined in MCM-41 investigated by large-angle X-ray scattering technique.
    Takamuku T; Maruyama H; Kittaka S; Takahara S; Yamaguchi T
    J Phys Chem B; 2005 Jan; 109(2):892-9. PubMed ID: 16866456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density measurement of 1-d confined water by small angle neutron scattering method: pore size and hydration level dependences.
    Liu D; Zhang Y; Liu Y; Wu J; Chen CC; Mou CY; Chen SH
    J Phys Chem B; 2008 Apr; 112(14):4309-12. PubMed ID: 18341324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier transform infrared and quasielectron neutron scattering studies on the binding modes of methanol molecules in the confined spaces of HMCM-41 and HZSM-5: role of pore structure and surface acid sites.
    Gupta NM; Kumar D; Kamble VS; Mitra S; Mukhopadhyay R; Kartha VB
    J Phys Chem B; 2006 Mar; 110(10):4815-23. PubMed ID: 16526719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local structure of a phase-separating binary mixture in a mesoporous glass matrix studied by small-angle neutron scattering.
    Schemmel S; Rother G; Eckerlebe H; Findenegg GH
    J Chem Phys; 2005 Jun; 122(24):244718. PubMed ID: 16035804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation of nanoconfined glycerol.
    Busselez R; Lefort R; Ji Q; Affouard F; Morineau D
    Phys Chem Chem Phys; 2009 Dec; 11(47):11127-33. PubMed ID: 20024381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons.
    Erko M; Wallacher D; Hoell A; Hauss T; Zizak I; Paris O
    Phys Chem Chem Phys; 2012 Mar; 14(11):3852-8. PubMed ID: 22327805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melting and freezing of water in cylindrical silica nanopores.
    Jähnert S; Vaca Chávez F; Schaumann GE; Schreiber A; Schönhoff M; Findenegg GH
    Phys Chem Chem Phys; 2008 Oct; 10(39):6039-51. PubMed ID: 18825292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary condensation in cylindrical pores: Monte Carlo study of the interplay of surface and finite size effects.
    Winkler A; Wilms D; Virnau P; Binder K
    J Chem Phys; 2010 Oct; 133(16):164702. PubMed ID: 21033814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics of liquid methanol confined within functionalized silica nanopores.
    Elola MD; Rodriguez J; Laria D
    J Chem Phys; 2010 Oct; 133(15):154707. PubMed ID: 20969419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct determination of fluid-solid coexistence of square-well fluids confined in narrow cylindrical hard pores.
    Huang HC; Chen WW; Singh JK; Kwak SK
    J Chem Phys; 2010 Jun; 132(22):224504. PubMed ID: 20550405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial effects on vitrification of confined glass-forming liquids.
    Trofymluk O; Levchenko AA; Navrotsky A
    J Chem Phys; 2005 Nov; 123(19):194509. PubMed ID: 16321102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Van der waals-like isotherms in a confined electrolyte by spherical and cylindrical nanopores.
    Aguilar-Pineda GE; Jiménez-Angeles F; Yu J; Lozada-Cassou M
    J Phys Chem B; 2007 Mar; 111(8):2033-44. PubMed ID: 17269816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of N2 adsorption in MCM-41 materials: hexagonal pores versus cylindrical pores.
    Ustinov EA
    Langmuir; 2009 Jul; 25(13):7450-6. PubMed ID: 19358591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutron scattering study of the dynamics of a polymer melt under nanoscopic confinement.
    Krutyeva M; Martin J; Arbe A; Colmenero J; Mijangos C; Schneider GJ; Unruh T; Su Y; Richter D
    J Chem Phys; 2009 Nov; 131(17):174901. PubMed ID: 19895040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2H-solid state NMR and DSC study of isobutyric acid in mesoporous silica materials.
    Vyalikh A; Emmler T; Shenderovich I; Zeng Y; Findenegg GH; Buntkowsky G
    Phys Chem Chem Phys; 2007 Jun; 9(18):2249-57. PubMed ID: 17487322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface excess free energy of simple fluids confined in cylindrical pores by isothermal-isobaric Monte Carlo: influence of pore size.
    Puibasset J
    J Chem Phys; 2007 May; 126(18):184701. PubMed ID: 17508818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic pressure of simple fluids confined in cylindrical nanopores by isothermal-isobaric Monte Carlo: influence of fluid/substrate interactions.
    Puibasset J
    J Chem Phys; 2007 Aug; 127(7):074702. PubMed ID: 17718622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.