These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 15260722)

  • 1. Electron pair localization function: a practical tool to visualize electron localization in molecules from quantum Monte Carlo data.
    Scemama A; Chaquin P; Caffarel M
    J Chem Phys; 2004 Jul; 121(4):1725-35. PubMed ID: 15260722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bond breaking and bond making in tetraoxygen: analysis of the O2(X3Sigma(g)-) + O2(X3Sigma(g)-) <==> O4 reaction using the electron pair localization function.
    Scemama A; Caffarel M; Ramírez-Solís A
    J Phys Chem A; 2009 Aug; 113(31):9014-21. PubMed ID: 19719306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Monte Carlo study of first-row atoms using transcorrelated variational Monte Carlo trial functions.
    Prasad R; Umezawa N; Domin D; Salomon-Ferrer R; Lester WA
    J Chem Phys; 2007 Apr; 126(16):164109. PubMed ID: 17477591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zero-variance zero-bias quantum Monte Carlo estimators of the spherically and system-averaged pair density.
    Toulouse J; Assaraf R; Umrigar CJ
    J Chem Phys; 2007 Jun; 126(24):244112. PubMed ID: 17614542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmark all-electron ab initio quantum Monte Carlo calculations for small molecules.
    Nemec N; Towler MD; Needs RJ
    J Chem Phys; 2010 Jan; 132(3):034111. PubMed ID: 20095732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron Pair Localization Function (EPLF) for Density Functional Theory and ab Initio Wave Function-Based Methods: A New Tool for Chemical Interpretation.
    Scemama A; Caffarel M; Chaudret R; Piquemal JP
    J Chem Theory Comput; 2011 Mar; 7(3):618-24. PubMed ID: 26596296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Monte Carlo study of the Ne atom and the Ne+ ion.
    Drummond ND; López Ríos P; Ma A; Trail JR; Spink GG; Towler MD; Needs RJ
    J Chem Phys; 2006 Jun; 124(22):224104. PubMed ID: 16784260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Monte Carlo with Jastrow-valence-bond wave functions.
    Braïda B; Toulouse J; Caffarel M; Umrigar CJ
    J Chem Phys; 2011 Feb; 134(8):084108. PubMed ID: 21361528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards accurate all-electron quantum Monte Carlo calculations of transition-metal systems: spectroscopy of the copper atom.
    Caffarel M; Daudey JP; Heully JL; Ramírez-Solís A
    J Chem Phys; 2005 Sep; 123(9):94102. PubMed ID: 16164336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rydberg states with quantum Monte Carlo.
    Bande A; Lüchow A; Della Sala F; Görling A
    J Chem Phys; 2006 Mar; 124(11):114114. PubMed ID: 16555881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron affinities with diffusion quantum Monte Carlo for C2 and BO molecules.
    Lu SI
    J Chem Phys; 2004 Dec; 121(21):10495-7. PubMed ID: 15549931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weak binding between two aromatic rings: feeling the van der Waals attraction by quantum Monte Carlo methods.
    Sorella S; Casula M; Rocca D
    J Chem Phys; 2007 Jul; 127(1):014105. PubMed ID: 17627335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum probability domains from Quantum Monte Carlo calculations.
    Scemama A; Caffarel M; Savin A
    J Comput Chem; 2007 Jan; 28(1):442-54. PubMed ID: 17143870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Monte Carlo calculations of the dissociation energies of three-electron hemibonded radical cationic dimers.
    Gurtubay IG; Drummond ND; Towler MD; Needs RJ
    J Chem Phys; 2006 Jan; 124(2):024318. PubMed ID: 16422594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlated geminal wave function for molecules: an efficient resonating valence bond approach.
    Casula M; Attaccalite C; Sorella S
    J Chem Phys; 2004 Oct; 121(15):7110-26. PubMed ID: 15473777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation energy of the water dimer from quantum Monte Carlo calculations.
    Gurtubay IG; Needs RJ
    J Chem Phys; 2007 Sep; 127(12):124306. PubMed ID: 17902902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bond breaking with auxiliary-field quantum Monte Carlo.
    Al-Saidi WA; Zhang S; Krakauer H
    J Chem Phys; 2007 Oct; 127(14):144101. PubMed ID: 17935380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular hydrogen adsorbed on benzene: Insights from a quantum Monte Carlo study.
    Beaudet TD; Casula M; Kim J; Sorella S; Martin RM
    J Chem Phys; 2008 Oct; 129(16):164711. PubMed ID: 19045302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of the fixed-node error in quantum Monte Carlo calculations of electronic transitions: the case of the singlet n-->pi* (CO) transition of the acrolein.
    Bouabça T; Ben Amor N; Maynau D; Caffarel M
    J Chem Phys; 2009 Mar; 130(11):114107. PubMed ID: 19317531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational methods in coupled electron-ion Monte Carlo simulations.
    Pierleoni C; Ceperley DM
    Chemphyschem; 2005 Sep; 6(9):1872-8. PubMed ID: 16088971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.