BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 15260800)

  • 1. Optically nonlinear energy transfer in light-harvesting dendrimers.
    Andrews DL; Bradshaw DS
    J Chem Phys; 2004 Aug; 121(5):2445-54. PubMed ID: 15260800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligothiophene dendrimers as new building blocks for optical applications.
    Ramakrishna G; Bhaskar A; Bauerle P; Goodson T
    J Phys Chem A; 2008 Mar; 112(10):2018-26. PubMed ID: 18044856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-harvesting in carbonyl-terminated phenylacetylene dendrimers: The role of delocalized excited States and the scaling of light-harvesting efficiency with dendrimer size.
    Ahn TS; Thompson AL; Bharathi P; Müller A; Bardeen CJ
    J Phys Chem B; 2006 Oct; 110(40):19810-9. PubMed ID: 17020366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically controlled resonance energy transfer: mechanism and configuration for all-optical switching.
    Bradshaw DS; Andrews DL
    J Chem Phys; 2008 Apr; 128(14):144506. PubMed ID: 18412458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organogels as scaffolds for excitation energy transfer and light harvesting.
    Ajayaghosh A; Praveen VK; Vijayakumar C
    Chem Soc Rev; 2008 Jan; 37(1):109-22. PubMed ID: 18197337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dendrimer light-harvesting: intramolecular electrodynamics and mechanisms.
    Andrews DL; Bradshaw DS; Jenkins RD; Rodríguez J
    Dalton Trans; 2009 Dec; (45):10006-14. PubMed ID: 19904427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical excitations in organic dendrimers investigated by time-resolved and nonlinear optical spectroscopy.
    Goodson TG
    Acc Chem Res; 2005 Feb; 38(2):99-107. PubMed ID: 15709729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the energy flow in light-harvesting dendrimers.
    Andrews DL; Li S; Rodriguez J; Slota J
    J Chem Phys; 2007 Oct; 127(13):134902. PubMed ID: 17919049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural induced control of energy transfer within Zn(II)-porphyrin dendrimers.
    Larsen J; Brüggemann B; Khoury T; Sly J; Crossley MJ; Sundström V; Akesson E
    J Phys Chem A; 2007 Oct; 111(42):10589-97. PubMed ID: 17914756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extending the light-harvesting properties of transition-metal dendrimers.
    Larsen J; Puntoriero F; Pascher T; McClenaghan N; Campagna S; Akesson E; Sundström V
    Chemphyschem; 2007 Dec; 8(18):2643-51. PubMed ID: 18058779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond Förster resonance energy transfer in biological and nanoscale systems.
    Beljonne D; Curutchet C; Scholes GD; Silbey RJ
    J Phys Chem B; 2009 May; 113(19):6583-99. PubMed ID: 19331333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical energy transport and interactions between the excitations in a coumarin-perylene bisimide dendrimer.
    Augulis R; Pugzlys A; Hurenkamp JH; Feringa BL; van Esch JH; van Loosdrecht PH
    J Phys Chem A; 2007 Dec; 111(50):12944-53. PubMed ID: 18044854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Donor-acceptor interactions in red-emitting thienylbenzene-branched dendrimers with benzothiadiazole core.
    Thomas KR; Huang TH; Lin JT; Pu SC; Cheng YM; Hsieh CC; Tai CP
    Chemistry; 2008; 14(35):11231-41. PubMed ID: 18991307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternating polyfluorenes collect solar light in polymer photovoltaics.
    Inganäs O; Zhang F; Andersson MR
    Acc Chem Res; 2009 Nov; 42(11):1731-9. PubMed ID: 19835413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance energy transfer: spectral overlap, efficiency, and direction.
    Andrews DL; Rodríguez J
    J Chem Phys; 2007 Aug; 127(8):084509. PubMed ID: 17764271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna.
    Chen L; Honsho Y; Seki S; Jiang D
    J Am Chem Soc; 2010 May; 132(19):6742-8. PubMed ID: 20218681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas.
    Mutlugun E; Samarskaya O; Ozel T; Cicek N; Gaponik N; Eychmüller A; Demir HV
    Opt Express; 2010 May; 18(10):10720-30. PubMed ID: 20588924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy and charge transfer dynamics in fully decorated benzyl ether dendrimers and their disubstituted analogues.
    Ahn TS; Nantalaksakul A; Dasari RR; Al-Kaysi RO; Müller AM; Thayumanavan S; Bardeen CJ
    J Phys Chem B; 2006 Dec; 110(48):24331-9. PubMed ID: 17134184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single and dual beam optical switching of resonance energy transfer.
    Andrews DL; Crisp RG; Li S
    J Chem Phys; 2007 Nov; 127(17):174702. PubMed ID: 17994837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.