BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15260826)

  • 1. Chlamydia--host cell interactions: recent advances on bacterial entry and intracellular development.
    Dautry-Varsat A; Balañá ME; Wyplosz B
    Traffic; 2004 Aug; 5(8):561-70. PubMed ID: 15260826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent insights into the mechanisms of Chlamydia entry.
    Dautry-Varsat A; Subtil A; Hackstadt T
    Cell Microbiol; 2005 Dec; 7(12):1714-22. PubMed ID: 16309458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chlamydial inclusion: escape from the endocytic pathway.
    Fields KA; Hackstadt T
    Annu Rev Cell Dev Biol; 2002; 18():221-45. PubMed ID: 12142274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effector protein modulation of host cells: examples in the Chlamydia spp. arsenal.
    Betts HJ; Wolf K; Fields KA
    Curr Opin Microbiol; 2009 Feb; 12(1):81-7. PubMed ID: 19138553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploitation of host signal transduction pathways and cytoskeletal functions by invasive bacteria.
    Rosenshine I; Finlay BB
    Bioessays; 1993 Jan; 15(1):17-24. PubMed ID: 8466472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis.
    Beatty WL
    J Cell Sci; 2006 Jan; 119(Pt 2):350-9. PubMed ID: 16410552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Chlamydia caviae entry sites and involvement of Cdc42 and Rac activity.
    Subtil A; Wyplosz B; Balañá ME; Dautry-Varsat A
    J Cell Sci; 2004 Aug; 117(Pt 17):3923-33. PubMed ID: 15265988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The pathogenicity of amoebae-resisting chlamydiales].
    Goy G; Greub G
    Rev Med Suisse; 2005 Aug; 1(29):1916-20. PubMed ID: 16152882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates.
    Subtil A; Delevoye C; Balañá ME; Tastevin L; Perrinet S; Dautry-Varsat A
    Mol Microbiol; 2005 Jun; 56(6):1636-47. PubMed ID: 15916612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hypothetical protein CT813 is localized in the Chlamydia trachomatis inclusion membrane and is immunogenic in women urogenitally infected with C. trachomatis.
    Chen C; Chen D; Sharma J; Cheng W; Zhong Y; Liu K; Jensen J; Shain R; Arulanandam B; Zhong G
    Infect Immun; 2006 Aug; 74(8):4826-40. PubMed ID: 16861671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane rafts: a potential gateway for bacterial entry into host cells.
    Hartlova A; Cerveny L; Hubalek M; Krocova Z; Stulik J
    Microbiol Immunol; 2010 Apr; 54(4):237-45. PubMed ID: 20377752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysosome repair enables host cell survival and bacterial persistence following Chlamydia trachomatis infection.
    Beatty WL
    Cell Microbiol; 2007 Sep; 9(9):2141-52. PubMed ID: 17451410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hijacking of Membrane Contact Sites by Intracellular Bacterial Pathogens.
    Derré I
    Adv Exp Med Biol; 2017; 997():211-223. PubMed ID: 28815533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of host signaling and cellular responses by Chlamydia.
    Mehlitz A; Rudel T
    Cell Commun Signal; 2013 Nov; 11():90. PubMed ID: 24267514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origins and functions of the chlamydial inclusion.
    Hackstadt T; Fischer ER; Scidmore MA; Rockey DD; Heinzen RA
    Trends Microbiol; 1997 Jul; 5(7):288-93. PubMed ID: 9234512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds.
    Kumar Y; Valdivia RH
    Cell Host Microbe; 2008 Aug; 4(2):159-69. PubMed ID: 18692775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry.
    Ford C; Nans A; Boucrot E; Hayward RD
    PLoS Pathog; 2018 May; 14(5):e1007051. PubMed ID: 29727463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydia: five years A.G. (after genome).
    Subtil A; Dautry-Varsat A
    Curr Opin Microbiol; 2004 Feb; 7(1):85-92. PubMed ID: 15036146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of host cell exit by the intracellular bacterium Chlamydia.
    Hybiske K; Stephens RS
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11430-5. PubMed ID: 17592133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of the host actin cytoskeleton by Salmonella--all in the name of entry.
    Patel JC; Galán JE
    Curr Opin Microbiol; 2005 Feb; 8(1):10-5. PubMed ID: 15694851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.