BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 15260978)

  • 1. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases.
    Zhang KY; Card GL; Suzuki Y; Artis DR; Fong D; Gillette S; Hsieh D; Neiman J; West BL; Zhang C; Milburn MV; Kim SH; Schlessinger J; Bollag G
    Mol Cell; 2004 Jul; 15(2):279-86. PubMed ID: 15260978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Phosphodiesterases of cyclic GMP].
    Wróblewska H; Gorczyca WA
    Postepy Hig Med Dosw; 2001; 55(5):611-27. PubMed ID: 11795198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of PDE4 structure on inhibitor selectivity across PDE families.
    Ke H
    Int J Impot Res; 2004 Jun; 16 Suppl 1():S24-7. PubMed ID: 15224132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of phosphodiesterase 9 shows orientation variation of inhibitor 3-isobutyl-1-methylxanthine binding.
    Huai Q; Wang H; Zhang W; Colman RW; Robinson H; Ke H
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9624-9. PubMed ID: 15210993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic nucleotide phosphodiesterases: relating structure and function.
    Francis SH; Turko IV; Corbin JD
    Prog Nucleic Acid Res Mol Biol; 2001; 65():1-52. PubMed ID: 11008484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity.
    Huai Q; Liu Y; Francis SH; Corbin JD; Ke H
    J Biol Chem; 2004 Mar; 279(13):13095-101. PubMed ID: 14668322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of overlapping but distinct cAMP and cGMP interaction sites with cyclic nucleotide phosphodiesterase 3A by site-directed mutagenesis and molecular modeling based on crystalline PDE4B.
    Zhang W; Ke H; Tretiakova AP; Jameson B; Colman RW
    Protein Sci; 2001 Aug; 10(8):1481-9. PubMed ID: 11468344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants for inhibitor specificity and selectivity in PDE2A using the wheat germ in vitro translation system.
    Iffland A; Kohls D; Low S; Luan J; Zhang Y; Kothe M; Cao Q; Kamath AV; Ding YH; Ellenberger T
    Biochemistry; 2005 Jun; 44(23):8312-25. PubMed ID: 15938621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cyclic nucleotide phosphodiesterases (PDEs) on mitochondrial skeletal muscle functions.
    Tetsi L; Charles AL; Paradis S; Lejay A; Talha S; Geny B; Lugnier C
    Cell Mol Life Sci; 2017 May; 74(10):1883-1893. PubMed ID: 28039524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and mutational analysis of the GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase, PDE5.
    Sopory S; Balaji S; Srinivasan N; Visweswariah SS
    FEBS Lett; 2003 Mar; 539(1-3):161-6. PubMed ID: 12650945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular determinants of cGMP binding to chicken cone photoreceptor phosphodiesterase.
    Huang D; Hinds TR; Martinez SE; Doneanu C; Beavo JA
    J Biol Chem; 2004 Nov; 279(46):48143-51. PubMed ID: 15331594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "cAMP-specific" phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide.
    Bellamy TC; Garthwaite J
    Mol Pharmacol; 2001 Jan; 59(1):54-61. PubMed ID: 11125024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of platelet activation by cyclic AMP turnover and cyclic nucleotide phosphodiesterase type-3.
    Feijge MA; Ansink K; Vanschoonbeek K; Heemskerk JW
    Biochem Pharmacol; 2004 Apr; 67(8):1559-67. PubMed ID: 15041473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Kinetic properties and regulation of cyclic nucleotide phosphodiesterases in lymphoid cells].
    Azhaeva EV; Severin ES
    Bioorg Khim; 1987 Sep; 13(9):1157-63. PubMed ID: 2827690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic nucleotide phosphodiesterases in cultured normal and RCS rat pigment epithelium: kinetics of cyclic AMP and cyclic GMP hydrolysis.
    Kurtz MJ; Edwards RB; Schmidt SY
    Exp Eye Res; 1987 Jul; 45(1):67-75. PubMed ID: 2820772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic nucleotide phosphodiesterase-mediated integration of cGMP and cAMP signaling in cells of the cardiovascular system.
    Maurice DH
    Front Biosci; 2005 May; 10():1221-8. PubMed ID: 15769620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seven Dictyostelium discoideum phosphodiesterases degrade three pools of cAMP and cGMP.
    Bader S; Kortholt A; Van Haastert PJ
    Biochem J; 2007 Feb; 402(1):153-61. PubMed ID: 17040207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions.
    Francis SH; Blount MA; Corbin JD
    Physiol Rev; 2011 Apr; 91(2):651-90. PubMed ID: 21527734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased expression of the cGMP-inhibited cAMP-specific (PDE3) and cGMP binding cGMP-specific (PDE5) phosphodiesterases in models of pulmonary hypertension.
    Murray F; MacLean MR; Pyne NJ
    Br J Pharmacol; 2002 Dec; 137(8):1187-94. PubMed ID: 12466227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time monitoring of phosphodiesterase inhibition in intact cells.
    Herget S; Lohse MJ; Nikolaev VO
    Cell Signal; 2008 Aug; 20(8):1423-31. PubMed ID: 18467075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.