These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1064 related articles for article (PubMed ID: 15261011)
1. Bacterial adhesion to glass and metal-oxide surfaces. Li B; Logan BE Colloids Surf B Biointerfaces; 2004 Jul; 36(2):81-90. PubMed ID: 15261011 [TBL] [Abstract][Full Text] [Related]
2. The impact of ultraviolet light on bacterial adhesion to glass and metal oxide-coated surface. Li B; Logan BE Colloids Surf B Biointerfaces; 2005 Mar; 41(2-3):153-61. PubMed ID: 15737541 [TBL] [Abstract][Full Text] [Related]
3. Short-term inactivation rates of selected Gram-positive and Gram-negative bacteria attached to metal oxide mineral surfaces: role of solution and surface chemistry. Asadishad B; Ghoshal S; Tufenkji N Environ Sci Technol; 2013 Jun; 47(11):5729-37. PubMed ID: 23679056 [TBL] [Abstract][Full Text] [Related]
4. Influence of (bi)carbonate on bacterial interaction with quartz and metal oxide-coated surfaces. Park SJ; Kim SB Colloids Surf B Biointerfaces; 2010 Mar; 76(1):57-62. PubMed ID: 19896343 [TBL] [Abstract][Full Text] [Related]
5. Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces. Chakraborty S; Mukherji S; Mukherji S Colloids Surf B Biointerfaces; 2010 Jun; 78(1):101-8. PubMed ID: 20236810 [TBL] [Abstract][Full Text] [Related]
6. Comparison of contact angle measurement and microbial adhesion to solvents for assaying electron donor-electron acceptor (acid-base) properties of bacterial surface. Hamadi F; Latrache H Colloids Surf B Biointerfaces; 2008 Aug; 65(1):134-9. PubMed ID: 18467077 [TBL] [Abstract][Full Text] [Related]
7. Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. Vadillo-Rodríguez V; Busscher HJ; van der Mei HC; de Vries J; Norde W Colloids Surf B Biointerfaces; 2005 Mar; 41(1):33-41. PubMed ID: 15698754 [TBL] [Abstract][Full Text] [Related]
8. Assessing bacterial adhesion using DLVO and XDLVO theories and the jet impingement technique. Bayoudh S; Othmane A; Mora L; Ben Ouada H Colloids Surf B Biointerfaces; 2009 Oct; 73(1):1-9. PubMed ID: 19493661 [TBL] [Abstract][Full Text] [Related]
9. Role of solution chemistry and ion valence on the adhesion kinetics of groundwater and marine bacteria. Chen G; Walker SL Langmuir; 2007 Jun; 23(13):7162-9. PubMed ID: 17523680 [TBL] [Abstract][Full Text] [Related]
10. Kinetic adhesion of bacterial cells to sand: cell surface properties and adhesion rate. Jacobs A; Lafolie F; Herry JM; Debroux M Colloids Surf B Biointerfaces; 2007 Sep; 59(1):35-45. PubMed ID: 17537618 [TBL] [Abstract][Full Text] [Related]
11. Force measurements of bacterial adhesion on metals using a cell probe atomic force microscope. Sheng X; Ting YP; Pehkonen SO J Colloid Interface Sci; 2007 Jun; 310(2):661-9. PubMed ID: 17321534 [TBL] [Abstract][Full Text] [Related]
12. Influence of surface energy of modified surfaces on bacterial adhesion. Liu Y; Zhao Q Biophys Chem; 2005 Aug; 117(1):39-45. PubMed ID: 15907363 [TBL] [Abstract][Full Text] [Related]
13. Adhesion characteristics of two Burkholderia cepacia strains examined using colloid probe microscopy and gradient force analysis. Salerno MB; Li X; Logan BE Colloids Surf B Biointerfaces; 2007 Sep; 59(1):46-51. PubMed ID: 17543507 [TBL] [Abstract][Full Text] [Related]
14. Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces. Maddikeri RR; Tosatti S; Schuler M; Chessari S; Textor M; Richards RG; Harris LG J Biomed Mater Res A; 2008 Feb; 84(2):425-35. PubMed ID: 17618480 [TBL] [Abstract][Full Text] [Related]
15. Importance of molecular details in predicting bacterial adhesion to hydrophobic surfaces. Salerno MB; Logan BE; Velegol D Langmuir; 2004 Nov; 20(24):10625-9. PubMed ID: 15544394 [TBL] [Abstract][Full Text] [Related]
16. Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass. Sodagari M; Wang H; Newby BM; Ju LK Colloids Surf B Biointerfaces; 2013 Mar; 103():121-8. PubMed ID: 23201728 [TBL] [Abstract][Full Text] [Related]
17. Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes. Meylheuc T; Methivier C; Renault M; Herry JM; Pradier CM; Bellon-Fontaine MN Colloids Surf B Biointerfaces; 2006 Oct; 52(2):128-37. PubMed ID: 16781848 [TBL] [Abstract][Full Text] [Related]
18. [Characteristics of adhesion of epiphytic bacteria on leaves of the seagrass Zostera marina and on abiotic surfaces]. Kurilenko VV; Ivanova EP; Mikhaĭlov VV Mikrobiologiia; 2007; 76(4):502-6. PubMed ID: 17974207 [TBL] [Abstract][Full Text] [Related]
19. Bacterial adhesion to metal oxide-coated surfaces in the presence of silicic acid. Park SJ; Kim SB Water Environ Res; 2011 May; 83(5):470-6. PubMed ID: 21657198 [TBL] [Abstract][Full Text] [Related]
20. The influence of ionic strength, nutrients and pH on bacterial adhesion to metals. Sheng X; Ting YP; Pehkonen SO J Colloid Interface Sci; 2008 May; 321(2):256-64. PubMed ID: 18343395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]