These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 15261086)
1. Electrostatic effects on the yield stress of whey protein isolate foams. Davis JP; Foegeding EA; Hansen FK Colloids Surf B Biointerfaces; 2004 Mar; 34(1):13-23. PubMed ID: 15261086 [TBL] [Abstract][Full Text] [Related]
2. Comparisons of the foaming and interfacial properties of whey protein isolate and egg white proteins. Davis JP; Foegeding EA Colloids Surf B Biointerfaces; 2007 Feb; 54(2):200-10. PubMed ID: 17123793 [TBL] [Abstract][Full Text] [Related]
3. Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins. Zhang Z; Dalgleish DG; Goff HD Colloids Surf B Biointerfaces; 2004 Mar; 34(2):113-21. PubMed ID: 15261081 [TBL] [Abstract][Full Text] [Related]
4. Foams prepared from whey protein isolate and egg white protein: 1. Physical, microstructural, and interfacial properties. Yang X; Berry TK; Foegeding EA J Food Sci; 2009 Jun; 74(5):E259-68. PubMed ID: 19646041 [TBL] [Abstract][Full Text] [Related]
5. Whey protein soluble aggregates from heating with NaCl: physicochemical, interfacial, and foaming properties. Schmitt C; Bovay C; Rouvet M; Shojaei-Rami S; Kolodziejczyk E Langmuir; 2007 Apr; 23(8):4155-66. PubMed ID: 17341103 [TBL] [Abstract][Full Text] [Related]
6. Foams prepared from whey protein isolate and egg white protein: 2. Changes associated with angel food cake functionality. Berry TK; Yang X; Foegeding EA J Food Sci; 2009 Jun; 74(5):E269-77. PubMed ID: 19646042 [TBL] [Abstract][Full Text] [Related]
7. Foaming and interfacial properties of hydrolyzed beta-lactoglobulin. Davis JP; Doucet D; Foegeding EA J Colloid Interface Sci; 2005 Aug; 288(2):412-22. PubMed ID: 15927608 [TBL] [Abstract][Full Text] [Related]
8. Impact of whey protein emulsifiers on the oxidative stability of salmon oil-in-water emulsions. Hu M; McClements DJ; Decker EA J Agric Food Chem; 2003 Feb; 51(5):1435-9. PubMed ID: 12590494 [TBL] [Abstract][Full Text] [Related]
9. Effect of cysteine on lowering protein aggregation and subsequent hardening of whey protein isolate (WPI) protein bars in WPI/buffer model systems. Zhu D; Labuza TP J Agric Food Chem; 2010 Jul; 58(13):7970-9. PubMed ID: 20557125 [TBL] [Abstract][Full Text] [Related]
10. Light-scattering study of the structure of aggregates and gels formed by heat-denatured whey protein isolate and beta-lactoglobulin at neutral pH. Mahmoudi N; Mehalebi S; Nicolai T; Durand D; Riaublanc A J Agric Food Chem; 2007 Apr; 55(8):3104-11. PubMed ID: 17378578 [TBL] [Abstract][Full Text] [Related]
11. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study. Perez AA; Sánchez CC; Patino JM; Rubiolo AC; Santiago LG Colloids Surf B Biointerfaces; 2010 Nov; 81(1):50-7. PubMed ID: 20692133 [TBL] [Abstract][Full Text] [Related]
12. Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched α-lactalbumin and β-lactoglobulin food ingredients. Bonnaillie LM; Tomasula PM J Agric Food Chem; 2012 May; 60(20):5257-66. PubMed ID: 22559165 [TBL] [Abstract][Full Text] [Related]
13. Interactions of whey proteins during heat treatment of oil-in-water emulsions formed with whey protein isolate and hydroxylated lecithin. Jiménez-Flores R; Ye A; Singh H J Agric Food Chem; 2005 May; 53(10):4213-9. PubMed ID: 15884863 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of disproportionation of air bubbles beneath a planar air-water interface stabilized by food proteins. Dickinson E; Ettelaie R; Murray BS; Du Z J Colloid Interface Sci; 2002 Aug; 252(1):202-13. PubMed ID: 16290780 [TBL] [Abstract][Full Text] [Related]
16. Effect of gastric conditions on β-lactoglobulin interfacial networks: influence of the oil phase on protein structure. Maldonado-Valderrama J; Miller R; Fainerman VB; Wilde PJ; Morris VJ Langmuir; 2010 Oct; 26(20):15901-8. PubMed ID: 20857971 [TBL] [Abstract][Full Text] [Related]
17. Dynamic adsorption and characterization of phospholipid and mixed phospholipid/protein layers at liquid/liquid interfaces. He Q; Zhang Y; Lu G; Miller R; Möhwald H; Li J Adv Colloid Interface Sci; 2008 Aug; 140(2):67-76. PubMed ID: 18279818 [TBL] [Abstract][Full Text] [Related]
18. Thermal modifications of structure and co-denaturation of alpha-lactalbumin and beta-lactoglobulin induce changes of solubility and susceptibility to proteases. Bertrand-Harb C; Baday A; Dalgalarrondo M; Chobert JM; Haertlé T Nahrung; 2002 Aug; 46(4):283-9. PubMed ID: 12224426 [TBL] [Abstract][Full Text] [Related]
19. Fibril assemblies in aqueous whey protein mixtures. Bolder SG; Hendrickx H; Sagis LM; van der Linden E J Agric Food Chem; 2006 Jun; 54(12):4229-34. PubMed ID: 16756351 [TBL] [Abstract][Full Text] [Related]
20. Cross-linking and rheological changes of whey proteins treated with microbial transglutaminase. Truong VD; Clare DA; Catignani GL; Swaisgood HE J Agric Food Chem; 2004 Mar; 52(5):1170-6. PubMed ID: 14995116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]