These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 15261086)
21. Peptides released from acid goat whey by a yeast-lactobacillus association isolated from cheese microflora. Didelot S; Bordenave-Juchereau S; Rosenfeld E; Piot JM; Sannier F J Dairy Res; 2006 May; 73(2):163-70. PubMed ID: 16476172 [TBL] [Abstract][Full Text] [Related]
22. Surface shear rheology of WPI-monoglyceride mixed films spread at the air-water interface. Carrera Sánchez C; Rodríguez Patino JM Colloids Surf B Biointerfaces; 2004 Jul; 36(1):57-69. PubMed ID: 15261024 [TBL] [Abstract][Full Text] [Related]
23. pH effects on the molecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology. Engelhardt K; Lexis M; Gochev G; Konnerth C; Miller R; Willenbacher N; Peukert W; Braunschweig B Langmuir; 2013 Sep; 29(37):11646-55. PubMed ID: 23961700 [TBL] [Abstract][Full Text] [Related]
24. Surface protein composition and concentration of whey protein isolate-stabilized oil-in-water emulsions: effect of heat treatment. Ye A Colloids Surf B Biointerfaces; 2010 Jun; 78(1):24-9. PubMed ID: 20211549 [TBL] [Abstract][Full Text] [Related]
25. Effect of calcium on the morphology and functionality of whey protein nanofibrils. Loveday SM; Su J; Rao MA; Anema SG; Singh H Biomacromolecules; 2011 Oct; 12(10):3780-8. PubMed ID: 21894942 [TBL] [Abstract][Full Text] [Related]
26. Interfacial behavior of N-nitrosodiethylamine/bovine serum albumin complexes at the air-water and the chloroform-water interfaces by axisymmetric drop tensiometry. Juárez J; Galaz JG; Machi L; Burboa M; Gutiérrez-Millán LE; Goycoolea FM; Valdez MA J Phys Chem B; 2007 Mar; 111(10):2727-35. PubMed ID: 17315914 [TBL] [Abstract][Full Text] [Related]
27. Disruption of viscoelastic beta-lactoglobulin surface layers at the air-water interface by nonionic polymeric surfactants. Rippner Blomqvist B; Ridout MJ; Mackie AR; Wärnheim T; Claesson PM; Wilde P Langmuir; 2004 Nov; 20(23):10150-8. PubMed ID: 15518507 [TBL] [Abstract][Full Text] [Related]
28. Mechanical characterization of network formation during heat-induced gelation of whey protein dispersions. Ikeda S; Nishinari K; Foegeding EA Biopolymers; 2000-2001; 56(2):109-19. PubMed ID: 11592057 [TBL] [Abstract][Full Text] [Related]
29. Foaming and adsorption behavior of bovine and camel proteins mixed layers at the air/water interface. Lajnaf R; Picart-Palmade L; Attia H; Marchesseau S; Ayadi MA Colloids Surf B Biointerfaces; 2017 Mar; 151():287-294. PubMed ID: 28038415 [TBL] [Abstract][Full Text] [Related]
30. Hydrophobic interaction adsorption of whey proteins: effect of temperature and salt concentration and thermodynamic analysis. Bonomo RC; Minim LA; Coimbra JS; Fontan RC; Mendes da Silva LH; Minim VP J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Nov; 844(1):6-14. PubMed ID: 16844436 [TBL] [Abstract][Full Text] [Related]
31. Self-similar assemblies of globular whey proteins at the air-water interface: effect of the structure. Mahmoudi N; Gaillard C; Boué F; Axelos MA; Riaublanc A J Colloid Interface Sci; 2010 May; 345(1):54-63. PubMed ID: 20138295 [TBL] [Abstract][Full Text] [Related]
32. Interaction between β-casein and whey proteins as a function of pH and salt concentration. Kehoe JJ; Foegeding EA J Agric Food Chem; 2011 Jan; 59(1):349-55. PubMed ID: 21133408 [TBL] [Abstract][Full Text] [Related]
33. Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air-water interface saturation. Perez AA; Sánchez CC; Patino JM; Rubiolo AC; Santiago LG Colloids Surf B Biointerfaces; 2011 Jul; 85(2):306-15. PubMed ID: 21440425 [TBL] [Abstract][Full Text] [Related]
34. Combined effect of heat treatment and ionic strength on the functionality of whey proteins. Hussain R; Gaiani C; Jeandel C; Ghanbaja J; Scher J J Dairy Sci; 2012 Nov; 95(11):6260-73. PubMed ID: 22939789 [TBL] [Abstract][Full Text] [Related]
35. Interfacial properties, film dynamics and bulk rheology: A multi-scale approach to dairy protein foams. Audebert A; Saint-Jalmes A; Beaufils S; Lechevalier V; Le Floch-Fouéré C; Cox S; Leconte N; Pezennec S J Colloid Interface Sci; 2019 Apr; 542():222-232. PubMed ID: 30753945 [TBL] [Abstract][Full Text] [Related]
36. Selective separation of the major whey proteins using ion exchange membranes. Goodall S; Grandison AS; Jauregi PJ; Price J J Dairy Sci; 2008 Jan; 91(1):1-10. PubMed ID: 18096919 [TBL] [Abstract][Full Text] [Related]
37. Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface. Freer EM; Yim KS; Fuller GG; Radke CJ Langmuir; 2004 Nov; 20(23):10159-67. PubMed ID: 15518508 [TBL] [Abstract][Full Text] [Related]
38. Adsorption of whey protein isolate at the oil-water interface as a function of processing conditions: a rheokinetic study. Rodríguez Patino JM; Rodríguez Niño MR; Sánchez CC J Agric Food Chem; 1999 Jun; 47(6):2241-8. PubMed ID: 10794617 [TBL] [Abstract][Full Text] [Related]
39. Effects of temperature, pH, and salt concentration on beta-lactoglobulin deposition kinetics studied by optical waveguide lightmode spectroscopy. Kroslak M; Sefcik J; Morbidelli M Biomacromolecules; 2007 Mar; 8(3):963-70. PubMed ID: 17302453 [TBL] [Abstract][Full Text] [Related]
40. Effect of α-lactalbumin and β-lactoglobulin on the oxidative stability of 10% fish oil-in-water emulsions depends on pH. Horn AF; Wulff T; Nielsen NS; Jacobsen C Food Chem; 2013 Nov; 141(1):574-81. PubMed ID: 23768396 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]