These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15261109)

  • 1. Intracellular pH and KATP channel activity in dorsal vagal neurons of juvenile rats in situ during metabolic disturbances.
    Raupach T; Ballanyi K
    Brain Res; 2004 Aug; 1017(1-2):137-45. PubMed ID: 15261109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ischemia but not anoxia evokes vesicular and Ca(2+)-independent glutamate release in the dorsal vagal complex in vitro.
    Kulik A; Trapp S; Ballanyi K
    J Neurophysiol; 2000 May; 83(5):2905-15. PubMed ID: 10805687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane potentials and microenvironment of rat dorsal vagal cells in vitro during energy depletion.
    Ballanyi K; Doutheil J; Brockhaus J
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):769-84. PubMed ID: 8887782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical anoxia activates ATP-sensitive and blocks Ca(2+)-dependent K(+) channels in rat dorsal vagal neurons in situ.
    Kulik A; Brockhaus J; Pedarzani P; Ballanyi K
    Neuroscience; 2002; 110(3):541-54. PubMed ID: 11906792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular Ca2+ during metabolic activation of KATP channels in spontaneously active dorsal vagal neurons in medullary slices.
    Ballanyi K; Kulik A
    Eur J Neurosci; 1998 Aug; 10(8):2574-85. PubMed ID: 9767388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acidosis of rat dorsal vagal neurons in situ during spontaneous and evoked activity.
    Trapp S; Lückermann M; Brooks PA; Ballanyi K
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):695-710. PubMed ID: 8930837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-independent anoxic activation of ATP-sensitive K+ channels in dorsal vagal neurons of juvenile mice in situ.
    Müller M; Brockhaus J; Ballanyi K
    Neuroscience; 2002; 109(2):313-28. PubMed ID: 11801367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-sensitive reduction in Ca²⁺-activated K⁺ channel open probability in turtle cerebrocortex.
    Rodgers-Garlick CI; Hogg DW; Buck LT
    Neuroscience; 2013 May; 237():243-54. PubMed ID: 23384611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KATP channel mediation of anoxia-induced outward current in rat dorsal vagal neurons in vitro.
    Trapp S; Ballanyi K
    J Physiol; 1995 Aug; 487(1):37-50. PubMed ID: 7473257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfhydryl oxidation reduces hippocampal susceptibility to hypoxia-induced spreading depression by activating BK channels.
    Hepp S; Gerich FJ; Müller M
    J Neurophysiol; 2005 Aug; 94(2):1091-103. PubMed ID: 15872065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+-activated K+ currents in rat locus coeruleus neurons induced by experimental ischemia, anoxia, and hypoglycemia.
    Murai Y; Ishibashi H; Koyama S; Akaike N
    J Neurophysiol; 1997 Nov; 78(5):2674-81. PubMed ID: 9356417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia recruits a respiratory-related excitatory pathway to brainstem premotor cardiac vagal neurons in animals exposed to prenatal nicotine.
    Evans C; Wang J; Neff R; Mendelowitz D
    Neuroscience; 2005; 133(4):1073-9. PubMed ID: 15964492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative glutamatergic and cholinergic mechanisms generate short-term modifications of synaptic effectiveness in prepositus hypoglossi neurons.
    Navarro-López Jde D; Delgado-García JM; Yajeya J
    J Neurosci; 2005 Oct; 25(43):9902-6. PubMed ID: 16251437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fentanyl inhibits GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus.
    Griffioen KJ; Venkatesan P; Huang ZG; Wang X; Bouairi E; Evans C; Gold A; Mendelowitz D
    Brain Res; 2004 May; 1007(1-2):109-15. PubMed ID: 15064141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of metabolic inhibition on the membrane properties of isolated mouse primary sensory neurones.
    Duchen MR
    J Physiol; 1990 May; 424():387-409. PubMed ID: 2391654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recruitment of excitatory serotonergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus post hypoxia and hypercapnia.
    Kamendi HW; Cheng Q; Dergacheva O; Frank JG; Gorini C; Jameson HS; Pinol RA; Wang X; Mendelowitz D
    J Neurophysiol; 2008 Mar; 99(3):1163-8. PubMed ID: 18184887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of anoxia-induced depolarization in brainstem neurons: in vitro current and voltage clamp studies in the adult rat.
    Haddad GG; Jiang C
    Brain Res; 1993 Oct; 625(2):261-8. PubMed ID: 7903900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential contribution of a voltage-activated proton conductance to acid extrusion from rat hippocampal neurons.
    Cheng YM; Kelly T; Church J
    Neuroscience; 2008 Feb; 151(4):1084-98. PubMed ID: 18201832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired hippocampal Ca2+ homeostasis and concomitant K+ channel dysfunction in a mouse model of Rett syndrome during anoxia.
    Kron M; Müller M
    Neuroscience; 2010 Nov; 171(1):300-15. PubMed ID: 20732392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of anoxic preconditioning on ATP-sensitive potassium channels in guinea-pig ventricular myocytes.
    Zhu Z; Li YL; Li DP; He RR
    Pflugers Arch; 2000 Apr; 439(6):808-13. PubMed ID: 10784356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.