BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 15261396)

  • 21. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.
    Wei CY; Chen TB
    Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytoremediation of arsenic contaminated soil by Pteris vittata L. I. Influence of phosphatic fertilizers and repeated harvests.
    Mandal A; Purakayastha TJ; Patra AK; Sanyal SK
    Int J Phytoremediation; 2012 Dec; 14(10):978-95. PubMed ID: 22908659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Al Agely A; Sylvia DM; Ma LQ
    J Environ Qual; 2005; 34(6):2181-6. PubMed ID: 16275719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arsenic hyperaccumulation by Pteris vittata and Pityrogramma calomelanos: a comparative study of uptake efficiency in arsenic-treated soils and waters.
    Yong JW; Tan SN; Ng YF; Low KK; Peh SF; Chua JC; Lim AA
    Water Sci Technol; 2010; 61(12):3041-9. PubMed ID: 20555200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pteris umbrosa R. Br. as an arsenic hyperaccumulator: accumulation, partitioning and comparison with the established As hyperaccumulator Pteris vittata.
    Koller CE; Patrick JW; Rose RJ; Offler CE; MacFarlane GR
    Chemosphere; 2007 Jan; 66(7):1256-63. PubMed ID: 16934852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic.
    Srivastava M; Ma LQ; Singh N; Singh S
    J Exp Bot; 2005 May; 56(415):1335-42. PubMed ID: 15781440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variation in arsenic, lead and zinc tolerance and accumulation in six populations of Pteris vittata L. from China.
    Wu FY; Leung HM; Wu SC; Ye ZH; Wong MH
    Environ Pollut; 2009; 157(8-9):2394-404. PubMed ID: 19371990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil.
    Chen BD; Zhu YG; Smith FA
    Chemosphere; 2006 Mar; 62(9):1464-73. PubMed ID: 16084565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic.
    Shelmerdine PA; Black CR; McGrath SP; Young SD
    Environ Pollut; 2009 May; 157(5):1589-96. PubMed ID: 19171413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First evidence on different transportation modes of arsenic and phosphorus in arsenic hyperaccumulator Pteris vittata.
    Lei M; Wan XM; Huang ZC; Chen TB; Li XW; Liu YR
    Environ Pollut; 2012 Feb; 161():1-7. PubMed ID: 22230060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L.
    Tu C; Ma LQ
    Environ Pollut; 2005 May; 135(2):333-40. PubMed ID: 15734593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phytoextraction: simulating uptake and translocation of arsenic in a soil-plant system.
    Ouyang Y
    Int J Phytoremediation; 2005; 7(1):3-17. PubMed ID: 15943240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L.
    Wei S; Ma LQ; Saha U; Mathews S; Sundaram S; Rathinasabapathi B; Zhou Q
    Environ Pollut; 2010 May; 158(5):1530-5. PubMed ID: 20045235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Advances in molecular mechanisms of arsenic hyperaccumulation of Pteris vittata L.].
    Zhang T; Yan H; He Z
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):397-406. PubMed ID: 32237534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata.
    Fayiga AO; Ma LQ
    Sci Total Environ; 2006 Apr; 359(1-3):17-25. PubMed ID: 15985282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytoremediation of arsenic-contaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: effects of frond harvesting regimes and arsenic levels in refill water.
    Natarajan S; Stamps RH; Ma LQ; Saha UK; Hernandez D; Cai Y; Zillioux EJ
    J Hazard Mater; 2011 Jan; 185(2-3):983-9. PubMed ID: 21051137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L.
    Wu FY; Ye ZH; Wong MH
    Chemosphere; 2009 Aug; 76(9):1258-64. PubMed ID: 19535126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata.
    Wang X; Ma LQ; Rathinasabapathi B; Cai Y; Liu YG; Zeng GM
    Environ Sci Technol; 2011 Nov; 45(22):9719-25. PubMed ID: 22029254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L.
    Silva Gonzaga MI; Santos JA; Ma LQ
    Environ Pollut; 2006 Sep; 143(2):254-60. PubMed ID: 16442683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China.
    Wang HB; Wong MH; Lan CY; Baker AJ; Qin YR; Shu WS; Chen GZ; Ye ZH
    Environ Pollut; 2007 Jan; 145(1):225-33. PubMed ID: 16777301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.