These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 15261411)
1. Re-evaluation of metal bioaccumulation and chronic toxicity in Hyalella azteca using saturation curves and the biotic ligand model. Borgmann U; Norwood WP; Dixon DG Environ Pollut; 2004 Oct; 131(3):469-84. PubMed ID: 15261411 [TBL] [Abstract][Full Text] [Related]
2. Effect of major ions on the toxicity of copper to Hyalella azteca and implications for the biotic ligand model. Borgmann U; Nowierski M; Dixon DG Aquat Toxicol; 2005 Jul; 73(3):268-87. PubMed ID: 15878788 [TBL] [Abstract][Full Text] [Related]
3. Saturation models of arsenic, cobalt, chromium and manganese bioaccumulation by Hyalella azteca. Norwood WP; Borgmann U; Dixon DG Environ Pollut; 2006 Oct; 143(3):519-28. PubMed ID: 16457922 [TBL] [Abstract][Full Text] [Related]
4. Chronic toxicity of arsenic, cobalt, chromium and manganese to Hyalella azteca in relation to exposure and bioaccumulation. Norwood WP; Borgmann U; Dixon DG Environ Pollut; 2007 May; 147(1):262-72. PubMed ID: 17045712 [TBL] [Abstract][Full Text] [Related]
5. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA. Besser JM; Brumbaugh WG; Ivey CD; Ingersoll CG; Moran PW Arch Environ Contam Toxicol; 2008 May; 54(4):557-70. PubMed ID: 18060524 [TBL] [Abstract][Full Text] [Related]
6. Interactive effects of metals in mixtures on bioaccumulation in the amphipod Hyalella azteca. Norwood WP; Borgmann U; Dixon DG Aquat Toxicol; 2007 Aug; 84(2):255-67. PubMed ID: 17651822 [TBL] [Abstract][Full Text] [Related]
7. Effects of water chemistry on the bioavailability of metals in sediment to Hyalella azteca: implications for sediment quality guidelines. Nowierski M; Dixon DG; Borgmann U Arch Environ Contam Toxicol; 2005 Oct; 49(3):322-32. PubMed ID: 16132414 [TBL] [Abstract][Full Text] [Related]
8. Lac Dufault sediment core trace metal distribution, bioavailability and toxicity to Hyalella azteca. Nowierski M; Dixon DG; Borgmann U Environ Pollut; 2006 Feb; 139(3):532-40. PubMed ID: 16099560 [TBL] [Abstract][Full Text] [Related]
9. Predicting acute copper toxicity to valve closure behavior in the freshwater clam Corbicula fluminea supports the biotic ligand model. Liao CM; Jou LJ; Lin CM; Chiang KC; Yeh CH; Chou BY Environ Toxicol; 2007 Jun; 22(3):295-307. PubMed ID: 17497636 [TBL] [Abstract][Full Text] [Related]
11. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model. Hatano A; Shoji R Environ Toxicol; 2008 Jun; 23(3):372-8. PubMed ID: 18214895 [TBL] [Abstract][Full Text] [Related]
12. Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas). Meyer JS; Boese CJ; Morris JM Aquat Toxicol; 2007 Aug; 84(2):268-78. PubMed ID: 17659358 [TBL] [Abstract][Full Text] [Related]
13. An effects addition model based on bioaccumulation of metals from exposure to mixtures of metals can predict chronic mortality in the aquatic invertebrate Hyalella azteca. Norwood WP; Borgmann U; Dixon DG Environ Toxicol Chem; 2013 Jul; 32(7):1672-81. PubMed ID: 23564557 [TBL] [Abstract][Full Text] [Related]
14. Joint toxicity of cadmium and phenanthrene in the freshwater amphipod Hyalella azteca. Gust KA Arch Environ Contam Toxicol; 2006 Jan; 50(1):7-13. PubMed ID: 16328620 [TBL] [Abstract][Full Text] [Related]
15. The amphipod Hyalella azteca as a biomonitor in field deployment studies for metal mining. Couillard Y; Grapentine LC; Borgmann U; Doyle P; Masson S Environ Pollut; 2008 Dec; 156(3):1314-24. PubMed ID: 18406025 [TBL] [Abstract][Full Text] [Related]
16. Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water. Besser JM; Brumbaugh WG; Allert AL; Poulton BC; Schmitt CJ; Ingersoll CG Ecotoxicol Environ Saf; 2009 Feb; 72(2):516-26. PubMed ID: 18603298 [TBL] [Abstract][Full Text] [Related]
17. Modes of metal toxicity and impaired branchial ionoregulation in rainbow trout exposed to mixtures of Pb and Cd in soft water. Birceanu O; Chowdhury MJ; Gillis PL; McGeer JC; Wood CM; Wilkie MP Aquat Toxicol; 2008 Sep; 89(4):222-31. PubMed ID: 18774611 [TBL] [Abstract][Full Text] [Related]
18. A new model for predicting time course toxicity of heavy metals based on Biotic Ligand Model (BLM). Hatano A; Shoji R Comp Biochem Physiol C Toxicol Pharmacol; 2010 Jan; 151(1):25-32. PubMed ID: 19689929 [TBL] [Abstract][Full Text] [Related]
19. Predicting metal toxicity in sediments: a critique of current approaches. Simpson SL; Batley GE Integr Environ Assess Manag; 2007 Jan; 3(1):18-31. PubMed ID: 17283593 [TBL] [Abstract][Full Text] [Related]
20. Bioaccumulation of the synthetic hormone 17alpha-ethinylestradiol in the benthic invertebrates Chironomus tentans and Hyalella azteca. Dussault EB; Balakrishnan VK; Borgmann U; Solomon KR; Sibley PK Ecotoxicol Environ Saf; 2009 Sep; 72(6):1635-41. PubMed ID: 19477518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]