These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15262629)

  • 1. Learning to optimize speed, accuracy, and energy expenditure: a framework for understanding speed-accuracy relations in goal-directed aiming.
    Elliott D; Hansen S; Mendoza J; Tremblay L
    J Mot Behav; 2004 Sep; 36(3):339-51. PubMed ID: 15262629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimising speed and energy expenditure in accurate visually directed upper limb movements.
    Elliott D; Hansen S; Grierson LE
    Ergonomics; 2009 Apr; 52(4):438-47. PubMed ID: 19401895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Goal-directed aiming: two components but multiple processes.
    Elliott D; Hansen S; Grierson LE; Lyons J; Bennett SJ; Hayes SJ
    Psychol Bull; 2010 Nov; 136(6):1023-44. PubMed ID: 20822209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are there age-related differences in learning to optimize speed, accuracy, and energy expenditure?
    Welsh TN; Higgins L; Elliott D
    Hum Mov Sci; 2007 Dec; 26(6):892-912. PubMed ID: 17937969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effector mass and trajectory optimization in the online regulation of goal-directed movement.
    Burkitt JJ; Staite V; Yeung A; Elliott D; Lyons JL
    Exp Brain Res; 2015 Apr; 233(4):1097-107. PubMed ID: 25567091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What causes specificity of practice in a manual aiming movement: vision dominance or transformation errors?
    Proteau L; Carnahan H
    J Mot Behav; 2001 Sep; 33(3):226-34. PubMed ID: 11495827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Action representations in perception, motor control and learning: implications for medical education.
    Elliott D; Grierson LE; Hayes SJ; Lyons J
    Med Educ; 2011 Feb; 45(2):119-31. PubMed ID: 21166837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The multiple process model of goal-directed reaching revisited.
    Elliott D; Lyons J; Hayes SJ; Burkitt JJ; Roberts JW; Grierson LE; Hansen S; Bennett SJ
    Neurosci Biobehav Rev; 2017 Jan; 72():95-110. PubMed ID: 27894830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Right hand advantage in visually guided reaching and aiming movements: brief review and comments.
    Grouios G
    Ergonomics; 2006 Aug; 49(10):1013-7. PubMed ID: 16803730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedforward impedance control efficiently reduce motor variability.
    Osu R; Morishige K; Miyamoto H; Kawato M
    Neurosci Res; 2009 Sep; 65(1):6-10. PubMed ID: 19523999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extending Energy Optimization in Goal-Directed Aiming from Movement Kinematics to Joint Angles.
    Burkitt JJ; Bongers RM; Elliott D; Hansen S; Lyons JL
    J Mot Behav; 2017; 49(2):129-140. PubMed ID: 28327058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The multiple process model of goal-directed aiming/reaching: insights on limb control from various special populations.
    Elliott D; Lyons J; Hayes SJ; Burkitt JJ; Hansen S; Grierson LEM; Foster NC; Roberts JW; Bennett SJ
    Exp Brain Res; 2020 Dec; 238(12):2685-2699. PubMed ID: 33079207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of objectives and constraints on motor control strategy in reciprocal aiming movements.
    Adam JJ
    J Mot Behav; 1992 Jun; 24(2):173-85. PubMed ID: 14977617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the role of visual afferent information for the control of aiming movements toward targets of different sizes.
    Proteau L; Isabelle G
    J Mot Behav; 2002 Dec; 34(4):367-84. PubMed ID: 12446251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical schemas and goals in the control of sequential behavior.
    Cooper RP; Shallice T
    Psychol Rev; 2006 Oct; 113(4):887-916; discussion 917-31. PubMed ID: 17014307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual control of manual aiming movements in 6- to 10-year-old children and adults.
    Lhuisset L; Proteau L
    J Mot Behav; 2004 Jun; 36(2):161-72. PubMed ID: 15130867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The BUMP model of response planning: variable horizon predictive control accounts for the speed-accuracy tradeoffs and velocity profiles of aimed movement.
    Bye RT; Neilson PD
    Hum Mov Sci; 2008 Oct; 27(5):771-98. PubMed ID: 18774616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear and logarithmic speed-accuracy trade-offs in reciprocal aiming result from task-specific parameterization of an invariant underlying dynamics.
    Bongers RM; Fernandez L; Bootsma RJ
    J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1443-57. PubMed ID: 19803648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voluntary running in deer mice: speed, distance, energy costs and temperature effects.
    Chappell MA; Garland T; Rezende EL; Gomes FR
    J Exp Biol; 2004 Oct; 207(Pt 22):3839-54. PubMed ID: 15472015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of metacognitive experiences in the learning process.
    Efklides A
    Psicothema; 2009 Feb; 21(1):76-82. PubMed ID: 19178860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.