BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 15262943)

  • 1. The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida.
    Arias-Barrau E; Olivera ER; Luengo JM; Fernández C; Galán B; García JL; Díaz E; Miñambres B
    J Bacteriol; 2004 Aug; 186(15):5062-77. PubMed ID: 15262943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-component hydroxylase involved in the assimilation of 3-hydroxyphenyl acetate in Pseudomonas putida.
    Arias-Barrau E; Sandoval A; Naharro G; Olivera ER; Luengo JM
    J Biol Chem; 2005 Jul; 280(28):26435-47. PubMed ID: 15866873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440.
    Jiménez JI; Miñambres B; García JL; Díaz E
    Environ Microbiol; 2002 Dec; 4(12):824-41. PubMed ID: 12534466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The homogentisate and homoprotocatechuate central pathways are involved in 3- and 4-hydroxyphenylacetate degradation by Burkholderia xenovorans LB400.
    Méndez V; Agulló L; González M; Seeger M
    PLoS One; 2011 Mar; 6(3):e17583. PubMed ID: 21423751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds.
    Morales G; Linares JF; Beloso A; Albar JP; Martínez JL; Rojo F
    J Bacteriol; 2004 Mar; 186(5):1337-44. PubMed ID: 14973036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of the PhhR regulon in Pseudomonas putida.
    Herrera MC; Duque E; Rodríguez-Herva JJ; Fernández-Escamilla AM; Ramos JL
    Environ Microbiol; 2010 Jun; 12(6):1427-38. PubMed ID: 20050871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster.
    Prieto MA; Díaz E; García JL
    J Bacteriol; 1996 Jan; 178(1):111-20. PubMed ID: 8550403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor.
    Phoenix P; Keane A; Patel A; Bergeron H; Ghoshal S; Lau PC
    Environ Microbiol; 2003 Dec; 5(12):1309-27. PubMed ID: 14641576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aromatic effector activation of the NtrC-like transcriptional regulator PhhR limits the catabolic potential of the (methyl)phenol degradative pathway it controls.
    Ng LC; Poh CL; Shingler V
    J Bacteriol; 1995 Mar; 177(6):1485-90. PubMed ID: 7883704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the global Crp regulator in cyclic AMP-dependent utilization of aromatic amino acids by Pseudomonas putida.
    Herrera MC; Daddaoua A; Fernández-Escamilla A; Ramos JL
    J Bacteriol; 2012 Jan; 194(2):406-12. PubMed ID: 22081386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolism of phenylalanine by Pseudomonas putida: the NtrC-family PhhR regulator binds to two sites upstream from the phhA gene and stimulates transcription with sigma70.
    Herrera MC; Ramos JL
    J Mol Biol; 2007 Mar; 366(5):1374-86. PubMed ID: 17217960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3.
    O'Leary ND; O'Connor KE; Duetz W; Dobson ADW
    Microbiology (Reading); 2001 Apr; 147(Pt 4):973-979. PubMed ID: 11283293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis.
    Kim YH; Cho K; Yun SH; Kim JY; Kwon KH; Yoo JS; Kim SI
    Proteomics; 2006 Feb; 6(4):1301-18. PubMed ID: 16470664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of phenylacetic acid uptake is σ54 dependent in Pseudomonas putida CA-3.
    O' Leary ND; O' Mahony MM; Dobson AD
    BMC Microbiol; 2011 Oct; 11():229. PubMed ID: 21995721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of homogentisate by strains of Bacillus and Moraxella.
    Crawford RL
    Can J Microbiol; 1976 Feb; 22(2):276-80. PubMed ID: 1260531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on spontaneous promoter-up mutations in the transcriptional activator-encoding gene phIR and their effects on the degradation of phenol in Escherichia coli and Pseudomonas putida.
    Burchhardt G; Schmidt I; Cuypers H; Petruschka L; Völker A; Herrmann H
    Mol Gen Genet; 1997 May; 254(5):539-47. PubMed ID: 9197413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12.
    Ferrández A; Garciá JL; Díaz E
    J Bacteriol; 1997 Apr; 179(8):2573-81. PubMed ID: 9098055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic characterization of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2.
    Alonso S; Bartolomé-Martín D; del Alamo M; Díaz E; García JL; Perera J
    Gene; 2003 Nov; 319():71-83. PubMed ID: 14597173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic metabolism of phenylacetic acids in Azoarcus evansii.
    Mohamed Mel-S; Ismail W; Heider J; Fuchs G
    Arch Microbiol; 2002 Sep; 178(3):180-92. PubMed ID: 12189419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of the allelopathic chemical m-tyrosine by Bacillus aquimaris SSC5 involves the homogentisate central pathway.
    Khan F; Kumari M; Cameotra SS
    PLoS One; 2013; 8(10):e75928. PubMed ID: 24098407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.