These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 15262943)

  • 61. The target for the Pseudomonas putida Crc global regulator in the benzoate degradation pathway is the BenR transcriptional regulator.
    Moreno R; Rojo F
    J Bacteriol; 2008 Mar; 190(5):1539-45. PubMed ID: 18156252
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Functional analysis of aromatic biosynthetic pathways in Pseudomonas putida KT2440.
    Molina-Henares MA; García-Salamanca A; Molina-Henares AJ; de la Torre J; Herrera MC; Ramos JL; Duque E
    Microb Biotechnol; 2009 Jan; 2(1):91-100. PubMed ID: 21261884
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Isopropylbenzene catabolic pathway in Pseudomonas putida RE204: nucleotide sequence analysis of the ipb operon and neighboring DNA from pRE4.
    Eaton RW; Selifonova OV; Gedney RM
    Biodegradation; 1998; 9(2):119-32. PubMed ID: 9821257
    [TBL] [Abstract][Full Text] [Related]  

  • 64. p-Cumate catabolic pathway in Pseudomonas putida Fl: cloning and characterization of DNA carrying the cmt operon.
    Eaton RW
    J Bacteriol; 1996 Mar; 178(5):1351-62. PubMed ID: 8631713
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Genetic organization of sulphur-controlled aryl desulphonation in Pseudomonas putida S-313.
    Vermeij P; Wietek C; Kahnert A; Wüest T; Kertesz MA
    Mol Microbiol; 1999 Jun; 32(5):913-26. PubMed ID: 10361295
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The tyrosine degradation gene hppD is transcriptionally activated by HpdA and repressed by HpdR in Streptomyces coelicolor, while hpdA is negatively autoregulated and repressed by HpdR.
    Yang H; Wang L; Xie Z; Tian Y; Liu G; Tan H
    Mol Microbiol; 2007 Aug; 65(4):1064-77. PubMed ID: 17640269
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Localization and organization of phenol degradation genes of Pseudomonas putida strain H.
    Herrmann H; Müller C; Schmidt I; Mahnke J; Petruschka L; Hahnke K
    Mol Gen Genet; 1995 Apr; 247(2):240-6. PubMed ID: 7753034
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Identification and molecular characterization of the homogentisate pathway responsible for pyomelanin production, the major melanin constituents in Aeromonas media WS.
    Wang H; Qiao Y; Chai B; Qiu C; Chen X
    PLoS One; 2015; 10(3):e0120923. PubMed ID: 25793756
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86.
    Choudhary A; Modak A; Apte SK; Phale PS
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733285
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY.
    Luu RA; Kootstra JD; Nesteryuk V; Brunton CN; Parales JV; Ditty JL; Parales RE
    Mol Microbiol; 2015 Apr; 96(1):134-47. PubMed ID: 25582673
    [TBL] [Abstract][Full Text] [Related]  

  • 71. TfdR, the LysR-type transcriptional activator, is responsible for the activation of the tfdCB operon of Pseudomonas putida 2, 4-dichlorophenoxyacetic acid degradative plasmid pEST4011.
    Vedler E; Kõiv V; Heinaru A
    Gene; 2000 Mar; 245(1):161-8. PubMed ID: 10713456
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus.
    Schmaler-Ripcke J; Sugareva V; Gebhardt P; Winkler R; Kniemeyer O; Heinekamp T; Brakhage AA
    Appl Environ Microbiol; 2009 Jan; 75(2):493-503. PubMed ID: 19028908
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Association of dnt genes of Burkholderia sp. DNT with the substrate-blind regulator DntR draws the evolutionary itinerary of 2,4-dinitrotoluene biodegradation.
    de Las Heras A; Chavarría M; de Lorenzo V
    Mol Microbiol; 2011 Oct; 82(2):287-99. PubMed ID: 21923773
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The 3,4-dihydroxyphenylacetic acid catabolon, a catabolic unit for degradation of biogenic amines tyramine and dopamine in Pseudomonas putida U.
    Arcos M; Olivera ER; Arias S; Naharro G; Luengo JM
    Environ Microbiol; 2010 Jun; 12(6):1684-704. PubMed ID: 20482587
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Interaction of two LysR-type regulatory proteins CatR and ClcR with heterologous promoters: functional and evolutionary implications.
    Parsek MR; McFall SM; Shinabarger DL; Chakrabarty AM
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12393-7. PubMed ID: 7809047
    [TBL] [Abstract][Full Text] [Related]  

  • 76. High stability and fast recovery of expression of the TOL plasmid-carried toluene catabolism genes of Pseudomonas putida mt-2 under conditions of oxygen limitation and oscillation.
    Martínez-Lavanchy PM; Müller C; Nijenhuis I; Kappelmeyer U; Buffing M; McPherson K; Heipieper HJ
    Appl Environ Microbiol; 2010 Oct; 76(20):6715-23. PubMed ID: 20709833
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Entner-Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1.
    Felux AK; Spiteller D; Klebensberger J; Schleheck D
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):E4298-305. PubMed ID: 26195800
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification of a membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1.
    Wang Y; Rawlings M; Gibson DT; Labbé D; Bergeron H; Brousseau R; Lau PC
    Mol Gen Genet; 1995 Mar; 246(5):570-9. PubMed ID: 7535376
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of the ptsN gene product in catabolite repression of the Pseudomonas putida TOL toluene degradation pathway in chemostat cultures.
    Aranda-Olmedo I; Marín P; Ramos JL; Marqués S
    Appl Environ Microbiol; 2006 Nov; 72(11):7418-21. PubMed ID: 16997980
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Transcriptional regulation of the sulfate-starvation-induced gene sfnA by a sigma54-dependent activator of Pseudomonas putida.
    Habe H; Kouzuma A; Endoh T; Omori T; Yamane H; Nojiri H
    Microbiology (Reading); 2007 Sep; 153(Pt 9):3091-3098. PubMed ID: 17768252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.