These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 15263280)

  • 1. EXAFS and principal component analysis: a new shell game.
    Wasserman SR; Allen PG; Shuh DK; Bucher JJ; Edelstein NM
    J Synchrotron Radiat; 1999 May; 6(Pt 3):284-6. PubMed ID: 15263280
    [No Abstract]   [Full Text] [Related]  

  • 2. SEDEM, a software package for EXAFS data extraction and modelling.
    Aberdam D
    J Synchrotron Radiat; 1998 Sep; 5(Pt 5):1287-97. PubMed ID: 16687836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An EXAFS and TRLFS investigation on uranium(VI) sorption to pristine and leached albite surfaces.
    Walter M; Arnold T; Geipel G; Scheinost A; Bernhard G
    J Colloid Interface Sci; 2005 Feb; 282(2):293-305. PubMed ID: 15589533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new FEFF-based wavelet for EXAFS data analysis.
    Funke H; Chukalina M; Scheinost AC
    J Synchrotron Radiat; 2007 Sep; 14(Pt 5):426-32. PubMed ID: 17717385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Th uptake on montmorillonite: a powder and polarized extended X-ray absorption fine structure (EXAFS) study.
    Dähn R; Scheidegger AM; Manceau A; Curti E; Baeyens B; Bradbury MH; Chateigner D
    J Colloid Interface Sci; 2002 May; 249(1):8-21. PubMed ID: 16290564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and simulation of the structure of nanoparticles that undergo a surface-driven structural transformation.
    Gilbert B; Zhang H; Huang F; Banfield JF; Ren Y; Haskel D; Lang JC; Srajer G; Jürgensen A; Waychunas GA
    J Chem Phys; 2004 Jun; 120(24):11785-95. PubMed ID: 15268213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Blind source separation for fMRI signals using a new independent component analysis algorithm and principal component analysis].
    Zhang W; Shi Z; Tang H; Tang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):430-3. PubMed ID: 17591275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dimension selection for feature selection and dimension reduction with principal and independent component analysis.
    Koch I; Naito K
    Neural Comput; 2007 Feb; 19(2):513-45. PubMed ID: 17206873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of macular and optic nerve disease by principal component analysis.
    Kara S; Güven A; Içer S
    Comput Biol Med; 2007 Jun; 37(6):836-41. PubMed ID: 17046736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A coupled Car-Parrinello molecular dynamics and EXAFS data analysis investigation of aqueous Co(2+).
    Spezia R; Duvail M; Vitorge P; Cartailler T; Tortajada J; Chillemi G; D'Angelo P; Gaigeot MP
    J Phys Chem A; 2006 Dec; 110(48):13081-8. PubMed ID: 17134169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The identification of age-related differences in kinetic gait parameters using principal component analysis.
    Chester VL; Wrigley AT
    Clin Biomech (Bristol, Avon); 2008 Feb; 23(2):212-20. PubMed ID: 18063458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principal component analysis of lifting waveforms.
    Wrigley AT; Albert WJ; Deluzio KJ; Stevenson JM
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):567-78. PubMed ID: 16524650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evidence for a variable first coordination shell of the cadmium(II) ion in aqueous, dimethyl sulfoxide, and N,N'-dimethylpropyleneurea solution.
    D'Angelo P; Chillemi G; Barone V; Mancini G; Sanna N; Persson I
    J Phys Chem B; 2005 May; 109(18):9178-85. PubMed ID: 16852093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust kernel principal component analysis.
    Huang SY; Yeh YR; Eguchi S
    Neural Comput; 2009 Nov; 21(11):3179-213. PubMed ID: 19686071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New lipophilic 3-hydroxy-4-pyridinonate iron(III) complexes: synthesis and EXAFS structural characterisation.
    Schlindwein W; Waltham E; Burgess J; Binsted N; Nunes A; Leite A; Rangel M
    Dalton Trans; 2006 Mar; (10):1313-21. PubMed ID: 16505910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ EXAFS, X-ray diffraction and photoluminescence for high-pressure studies.
    Sapelkin AV; Bayliss SC; Russell D; Clark SM; Dent AJ
    J Synchrotron Radiat; 2000 Jul; 7(Pt 4):257-61. PubMed ID: 16609204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational states and folding pathways of peptides revealed by principal-independent component analyses.
    Nguyen PH
    Proteins; 2007 May; 67(3):579-92. PubMed ID: 17348012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral simulation study on the influence of the principal component analysis step on principal component regression.
    Hasegawa T
    Appl Spectrosc; 2006 Jan; 60(1):95-8. PubMed ID: 16454919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The amplitude reduction factor and the cumulant expansion method: crucial factors in the structural analysis of alkoxide precursors in solution.
    Bauer M; Bertagnolli H
    J Phys Chem B; 2007 Dec; 111(49):13756-64. PubMed ID: 18020443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular simulation analysis and X-ray absorption measurement of Ca2+, K+ and Cl- ions in solution.
    Dang LX; Schenter GK; Glezakou VA; Fulton JL
    J Phys Chem B; 2006 Nov; 110(47):23644-54. PubMed ID: 17125322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.